Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpstrcl Structured version   Visualization version   GIF version

Theorem mpstrcl 31716
Description: The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
mpstrcl (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))

Proof of Theorem mpstrcl
StepHypRef Expression
1 df-ot 4318 . . 3 𝐷, 𝐻, 𝐴⟩ = ⟨⟨𝐷, 𝐻⟩, 𝐴
2 mpstssv.p . . . . 5 𝑃 = (mPreSt‘𝑇)
32mpstssv 31714 . . . 4 𝑃 ⊆ ((V × V) × V)
43sseli 3728 . . 3 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ ((V × V) × V))
51, 4syl5eqelr 2832 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V))
6 opelxp 5291 . . . 4 (⟨𝐷, 𝐻⟩ ∈ (V × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V))
76anbi1i 733 . . 3 ((⟨𝐷, 𝐻⟩ ∈ (V × V) ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V))
8 opelxp 5291 . . 3 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V) ↔ (⟨𝐷, 𝐻⟩ ∈ (V × V) ∧ 𝐴 ∈ V))
9 df-3an 1074 . . 3 ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) ↔ ((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V))
107, 8, 93bitr4i 292 . 2 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))
115, 10sylib 208 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1620  wcel 2127  Vcvv 3328  cop 4315  cotp 4317   × cxp 5252  cfv 6037  mPreStcmpst 31648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-ot 4318  df-uni 4577  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-iota 6000  df-fun 6039  df-fv 6045  df-mpst 31668
This theorem is referenced by:  elmsta  31723  mclsax  31744
  Copyright terms: Public domain W3C validator