Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2matmul Structured version   Visualization version   GIF version

Theorem mpt2matmul 20300
 Description: Multiplication of two N x N matrices given in maps-to notation. (Contributed by AV, 29-Oct-2019.)
Hypotheses
Ref Expression
mpt2matmul.a 𝐴 = (𝑁 Mat 𝑅)
mpt2matmul.b 𝐵 = (Base‘𝑅)
mpt2matmul.m × = (.r𝐴)
mpt2matmul.t · = (.r𝑅)
mpt2matmul.r (𝜑𝑅𝑉)
mpt2matmul.n (𝜑𝑁 ∈ Fin)
mpt2matmul.x 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶)
mpt2matmul.y 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸)
mpt2matmul.c ((𝜑𝑖𝑁𝑗𝑁) → 𝐶𝐵)
mpt2matmul.e ((𝜑𝑖𝑁𝑗𝑁) → 𝐸𝐵)
mpt2matmul.d ((𝜑 ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → 𝐷 = 𝐶)
mpt2matmul.f ((𝜑 ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → 𝐹 = 𝐸)
mpt2matmul.1 ((𝜑𝑘𝑁𝑚𝑁) → 𝐷𝑈)
mpt2matmul.2 ((𝜑𝑚𝑁𝑙𝑁) → 𝐹𝑊)
Assertion
Ref Expression
mpt2matmul (𝜑 → (𝑋 × 𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
Distinct variable groups:   𝐷,𝑖,𝑗   𝑖,𝐹,𝑗   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚   𝑅,𝑖,𝑗,𝑘,𝑙,𝑚   𝑘,𝑋,𝑙,𝑚   𝑘,𝑌,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙,𝑚   · ,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐶(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐷(𝑘,𝑚,𝑙)   · (𝑖,𝑗,𝑚)   × (𝑖,𝑗,𝑘,𝑚,𝑙)   𝑈(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐸(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐹(𝑘,𝑚,𝑙)   𝑉(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑊(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑋(𝑖,𝑗)   𝑌(𝑖,𝑗)

Proof of Theorem mpt2matmul
StepHypRef Expression
1 mpt2matmul.n . . 3 (𝜑𝑁 ∈ Fin)
2 mpt2matmul.r . . 3 (𝜑𝑅𝑉)
3 mpt2matmul.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
4 eqid 2651 . . . . . . 7 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
53, 4matmulr 20292 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
6 mpt2matmul.m . . . . . 6 × = (.r𝐴)
75, 6syl6eqr 2703 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = × )
87oveqd 6707 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑋 × 𝑌))
98eqcomd 2657 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
101, 2, 9syl2anc 694 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
11 eqid 2651 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 mpt2matmul.t . . 3 · = (.r𝑅)
13 mpt2matmul.x . . . . 5 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶)
14 eqid 2651 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
15 mpt2matmul.c . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → 𝐶𝐵)
16 mpt2matmul.b . . . . . . 7 𝐵 = (Base‘𝑅)
1715, 16syl6eleq 2740 . . . . . 6 ((𝜑𝑖𝑁𝑗𝑁) → 𝐶 ∈ (Base‘𝑅))
183, 11, 14, 1, 2, 17matbas2d 20277 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝐶) ∈ (Base‘𝐴))
1913, 18syl5eqel 2734 . . . 4 (𝜑𝑋 ∈ (Base‘𝐴))
203, 11matbas2 20275 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
211, 2, 20syl2anc 694 . . . 4 (𝜑 → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
2219, 21eleqtrrd 2733 . . 3 (𝜑𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
23 mpt2matmul.y . . . . 5 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸)
24 mpt2matmul.e . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → 𝐸𝐵)
2524, 16syl6eleq 2740 . . . . . 6 ((𝜑𝑖𝑁𝑗𝑁) → 𝐸 ∈ (Base‘𝑅))
263, 11, 14, 1, 2, 25matbas2d 20277 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝐸) ∈ (Base‘𝐴))
2723, 26syl5eqel 2734 . . . 4 (𝜑𝑌 ∈ (Base‘𝐴))
2827, 21eleqtrrd 2733 . . 3 (𝜑𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
294, 11, 12, 2, 1, 1, 1, 22, 28mamuval 20240 . 2 (𝜑 → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))))))
3013a1i 11 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶))
31 equcom 1991 . . . . . . . . . . . . . 14 (𝑖 = 𝑘𝑘 = 𝑖)
32 equcom 1991 . . . . . . . . . . . . . 14 (𝑗 = 𝑚𝑚 = 𝑗)
3331, 32anbi12i 733 . . . . . . . . . . . . 13 ((𝑖 = 𝑘𝑗 = 𝑚) ↔ (𝑘 = 𝑖𝑚 = 𝑗))
34 mpt2matmul.d . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → 𝐷 = 𝐶)
3533, 34sylan2b 491 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐷 = 𝐶)
3635eqcomd 2657 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐶 = 𝐷)
3736ex 449 . . . . . . . . . 10 (𝜑 → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
38373ad2ant1 1102 . . . . . . . . 9 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
3938adantr 480 . . . . . . . 8 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
4039imp 444 . . . . . . 7 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐶 = 𝐷)
41 simpl2 1085 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑘𝑁)
42 simpr 476 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑚𝑁)
43 simpl1 1084 . . . . . . . 8 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝜑)
44 mpt2matmul.1 . . . . . . . 8 ((𝜑𝑘𝑁𝑚𝑁) → 𝐷𝑈)
4543, 41, 42, 44syl3anc 1366 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝐷𝑈)
4630, 40, 41, 42, 45ovmpt2d 6830 . . . . . 6 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑘𝑋𝑚) = 𝐷)
4723a1i 11 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸))
48 equcomi 1990 . . . . . . . . . . . . . 14 (𝑖 = 𝑚𝑚 = 𝑖)
49 equcomi 1990 . . . . . . . . . . . . . 14 (𝑗 = 𝑙𝑙 = 𝑗)
5048, 49anim12i 589 . . . . . . . . . . . . 13 ((𝑖 = 𝑚𝑗 = 𝑙) → (𝑚 = 𝑖𝑙 = 𝑗))
51 mpt2matmul.f . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → 𝐹 = 𝐸)
5250, 51sylan2 490 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐹 = 𝐸)
5352ex 449 . . . . . . . . . . 11 (𝜑 → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
54533ad2ant1 1102 . . . . . . . . . 10 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
5554adantr 480 . . . . . . . . 9 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
5655imp 444 . . . . . . . 8 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐹 = 𝐸)
5756eqcomd 2657 . . . . . . 7 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐸 = 𝐹)
58 simpl3 1086 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑙𝑁)
59 mpt2matmul.2 . . . . . . . 8 ((𝜑𝑚𝑁𝑙𝑁) → 𝐹𝑊)
6043, 42, 58, 59syl3anc 1366 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝐹𝑊)
6147, 57, 42, 58, 60ovmpt2d 6830 . . . . . 6 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑌𝑙) = 𝐹)
6246, 61oveq12d 6708 . . . . 5 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑋𝑚) · (𝑚𝑌𝑙)) = (𝐷 · 𝐹))
6362mpteq2dva 4777 . . . 4 ((𝜑𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))) = (𝑚𝑁 ↦ (𝐷 · 𝐹)))
6463oveq2d 6706 . . 3 ((𝜑𝑘𝑁𝑙𝑁) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙)))) = (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹))))
6564mpt2eq3dva 6761 . 2 (𝜑 → (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
6610, 29, 653eqtrd 2689 1 (𝜑 → (𝑋 × 𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ⟨cotp 4218   ↦ cmpt 4762   × cxp 5141  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692   ↑𝑚 cmap 7899  Fincfn 7997  Basecbs 15904  .rcmulr 15989   Σg cgsu 16148   maMul cmmul 20237   Mat cmat 20261 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-prds 16155  df-pws 16157  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-mamu 20238  df-mat 20262 This theorem is referenced by:  mat2pmatmul  20584
 Copyright terms: Public domain W3C validator