MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2matmul Structured version   Visualization version   GIF version

Theorem mpt2matmul 20018
Description: Multiplication of two N x N matrices given in maps-to notation. (Contributed by AV, 29-Oct-2019.)
Hypotheses
Ref Expression
mpt2matmul.a 𝐴 = (𝑁 Mat 𝑅)
mpt2matmul.b 𝐵 = (Base‘𝑅)
mpt2matmul.m × = (.r𝐴)
mpt2matmul.t · = (.r𝑅)
mpt2matmul.r (𝜑𝑅𝑉)
mpt2matmul.n (𝜑𝑁 ∈ Fin)
mpt2matmul.x 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶)
mpt2matmul.y 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸)
mpt2matmul.c ((𝜑𝑖𝑁𝑗𝑁) → 𝐶𝐵)
mpt2matmul.e ((𝜑𝑖𝑁𝑗𝑁) → 𝐸𝐵)
mpt2matmul.d ((𝜑 ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → 𝐷 = 𝐶)
mpt2matmul.f ((𝜑 ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → 𝐹 = 𝐸)
mpt2matmul.1 ((𝜑𝑘𝑁𝑚𝑁) → 𝐷𝑈)
mpt2matmul.2 ((𝜑𝑚𝑁𝑙𝑁) → 𝐹𝑊)
Assertion
Ref Expression
mpt2matmul (𝜑 → (𝑋 × 𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
Distinct variable groups:   𝐷,𝑖,𝑗   𝑖,𝐹,𝑗   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚   𝑅,𝑖,𝑗,𝑘,𝑙,𝑚   𝑘,𝑋,𝑙,𝑚   𝑘,𝑌,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙,𝑚   · ,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐶(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐷(𝑘,𝑚,𝑙)   · (𝑖,𝑗,𝑚)   × (𝑖,𝑗,𝑘,𝑚,𝑙)   𝑈(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐸(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐹(𝑘,𝑚,𝑙)   𝑉(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑊(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑋(𝑖,𝑗)   𝑌(𝑖,𝑗)

Proof of Theorem mpt2matmul
StepHypRef Expression
1 mpt2matmul.n . . 3 (𝜑𝑁 ∈ Fin)
2 mpt2matmul.r . . 3 (𝜑𝑅𝑉)
3 mpt2matmul.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
4 eqid 2609 . . . . . . 7 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
53, 4matmulr 20010 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
6 mpt2matmul.m . . . . . 6 × = (.r𝐴)
75, 6syl6eqr 2661 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = × )
87oveqd 6543 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑋 × 𝑌))
98eqcomd 2615 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
101, 2, 9syl2anc 690 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
11 eqid 2609 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 mpt2matmul.t . . 3 · = (.r𝑅)
13 mpt2matmul.x . . . . 5 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶)
14 eqid 2609 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
15 mpt2matmul.c . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → 𝐶𝐵)
16 mpt2matmul.b . . . . . . 7 𝐵 = (Base‘𝑅)
1715, 16syl6eleq 2697 . . . . . 6 ((𝜑𝑖𝑁𝑗𝑁) → 𝐶 ∈ (Base‘𝑅))
183, 11, 14, 1, 2, 17matbas2d 19995 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝐶) ∈ (Base‘𝐴))
1913, 18syl5eqel 2691 . . . 4 (𝜑𝑋 ∈ (Base‘𝐴))
203, 11matbas2 19993 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
211, 2, 20syl2anc 690 . . . 4 (𝜑 → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
2219, 21eleqtrrd 2690 . . 3 (𝜑𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
23 mpt2matmul.y . . . . 5 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸)
24 mpt2matmul.e . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → 𝐸𝐵)
2524, 16syl6eleq 2697 . . . . . 6 ((𝜑𝑖𝑁𝑗𝑁) → 𝐸 ∈ (Base‘𝑅))
263, 11, 14, 1, 2, 25matbas2d 19995 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝐸) ∈ (Base‘𝐴))
2723, 26syl5eqel 2691 . . . 4 (𝜑𝑌 ∈ (Base‘𝐴))
2827, 21eleqtrrd 2690 . . 3 (𝜑𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
294, 11, 12, 2, 1, 1, 1, 22, 28mamuval 19958 . 2 (𝜑 → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))))))
3013a1i 11 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶))
31 equcom 1931 . . . . . . . . . . . . . 14 (𝑖 = 𝑘𝑘 = 𝑖)
32 equcom 1931 . . . . . . . . . . . . . 14 (𝑗 = 𝑚𝑚 = 𝑗)
3331, 32anbi12i 728 . . . . . . . . . . . . 13 ((𝑖 = 𝑘𝑗 = 𝑚) ↔ (𝑘 = 𝑖𝑚 = 𝑗))
34 mpt2matmul.d . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → 𝐷 = 𝐶)
3533, 34sylan2b 490 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐷 = 𝐶)
3635eqcomd 2615 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐶 = 𝐷)
3736ex 448 . . . . . . . . . 10 (𝜑 → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
38373ad2ant1 1074 . . . . . . . . 9 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
3938adantr 479 . . . . . . . 8 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
4039imp 443 . . . . . . 7 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐶 = 𝐷)
41 simpl2 1057 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑘𝑁)
42 simpr 475 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑚𝑁)
43 simpl1 1056 . . . . . . . 8 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝜑)
44 mpt2matmul.1 . . . . . . . 8 ((𝜑𝑘𝑁𝑚𝑁) → 𝐷𝑈)
4543, 41, 42, 44syl3anc 1317 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝐷𝑈)
4630, 40, 41, 42, 45ovmpt2d 6663 . . . . . 6 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑘𝑋𝑚) = 𝐷)
4723a1i 11 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸))
48 equcomi 1930 . . . . . . . . . . . . . 14 (𝑖 = 𝑚𝑚 = 𝑖)
49 equcomi 1930 . . . . . . . . . . . . . 14 (𝑗 = 𝑙𝑙 = 𝑗)
5048, 49anim12i 587 . . . . . . . . . . . . 13 ((𝑖 = 𝑚𝑗 = 𝑙) → (𝑚 = 𝑖𝑙 = 𝑗))
51 mpt2matmul.f . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → 𝐹 = 𝐸)
5250, 51sylan2 489 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐹 = 𝐸)
5352ex 448 . . . . . . . . . . 11 (𝜑 → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
54533ad2ant1 1074 . . . . . . . . . 10 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
5554adantr 479 . . . . . . . . 9 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
5655imp 443 . . . . . . . 8 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐹 = 𝐸)
5756eqcomd 2615 . . . . . . 7 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐸 = 𝐹)
58 simpl3 1058 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑙𝑁)
59 mpt2matmul.2 . . . . . . . 8 ((𝜑𝑚𝑁𝑙𝑁) → 𝐹𝑊)
6043, 42, 58, 59syl3anc 1317 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝐹𝑊)
6147, 57, 42, 58, 60ovmpt2d 6663 . . . . . 6 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑌𝑙) = 𝐹)
6246, 61oveq12d 6544 . . . . 5 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑋𝑚) · (𝑚𝑌𝑙)) = (𝐷 · 𝐹))
6362mpteq2dva 4666 . . . 4 ((𝜑𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))) = (𝑚𝑁 ↦ (𝐷 · 𝐹)))
6463oveq2d 6542 . . 3 ((𝜑𝑘𝑁𝑙𝑁) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙)))) = (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹))))
6564mpt2eq3dva 6594 . 2 (𝜑 → (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
6610, 29, 653eqtrd 2647 1 (𝜑 → (𝑋 × 𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  cotp 4132  cmpt 4637   × cxp 5025  cfv 5789  (class class class)co 6526  cmpt2 6528  𝑚 cmap 7721  Fincfn 7818  Basecbs 15643  .rcmulr 15717   Σg cgsu 15872   maMul cmmul 19955   Mat cmat 19979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-ot 4133  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-dec 11328  df-uz 11522  df-fz 12155  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-sca 15732  df-vsca 15733  df-ip 15734  df-tset 15735  df-ple 15736  df-ds 15739  df-hom 15741  df-cco 15742  df-0g 15873  df-prds 15879  df-pws 15881  df-sra 18941  df-rgmod 18942  df-dsmm 19842  df-frlm 19857  df-mamu 19956  df-mat 19980
This theorem is referenced by:  mat2pmatmul  20302
  Copyright terms: Public domain W3C validator