Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpt2mptxf Structured version   Visualization version   GIF version

Theorem mpt2mptxf 28678
Description: Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Thierry Arnoux, 31-Mar-2018.)
Hypotheses
Ref Expression
mpt2mptxf.0 𝑥𝐶
mpt2mptxf.1 𝑦𝐶
mpt2mptxf.2 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
mpt2mptxf (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦)

Proof of Theorem mpt2mptxf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4543 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)}
2 df-mpt2 6430 . . 3 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)}
3 eliunxp 5073 . . . . . . 7 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
43anbi1i 726 . . . . . 6 ((𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
5 mpt2mptxf.1 . . . . . . . . . 10 𝑦𝐶
65nfeq2 2670 . . . . . . . . 9 𝑦 𝑤 = 𝐶
7619.41 2101 . . . . . . . 8 (∃𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
87exbii 1752 . . . . . . 7 (∃𝑥𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ ∃𝑥(∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
9 mpt2mptxf.0 . . . . . . . . 9 𝑥𝐶
109nfeq2 2670 . . . . . . . 8 𝑥 𝑤 = 𝐶
111019.41 2101 . . . . . . 7 (∃𝑥(∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
128, 11bitri 262 . . . . . 6 (∃𝑥𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
13 anass 678 . . . . . . . 8 (((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
14 mpt2mptxf.2 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
1514eqeq2d 2524 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑤 = 𝐶𝑤 = 𝐷))
1615anbi2d 735 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
1716pm5.32i 666 . . . . . . . 8 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
1813, 17bitri 262 . . . . . . 7 (((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
19182exbii 1753 . . . . . 6 (∃𝑥𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
204, 12, 193bitr2i 286 . . . . 5 ((𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
2120opabbii 4547 . . . 4 {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)} = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷))}
22 dfoprab2 6474 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)} = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷))}
2321, 22eqtr4i 2539 . . 3 {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)}
242, 23eqtr4i 2539 . 2 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)}
251, 24eqtr4i 2539 1 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wex 1694  wcel 1938  wnfc 2642  {csn 4028  cop 4034   ciun 4353  {copab 4540  cmpt 4541   × cxp 4930  {coprab 6426  cmpt2 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pr 4732
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-iun 4355  df-opab 4542  df-mpt 4543  df-xp 4938  df-rel 4939  df-oprab 6429  df-mpt2 6430
This theorem is referenced by:  gsummpt2co  28937
  Copyright terms: Public domain W3C validator