Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpt2mptxf Structured version   Visualization version   GIF version

Theorem mpt2mptxf 29451
Description: Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Thierry Arnoux, 31-Mar-2018.)
Hypotheses
Ref Expression
mpt2mptxf.0 𝑥𝐶
mpt2mptxf.1 𝑦𝐶
mpt2mptxf.2 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
mpt2mptxf (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦)

Proof of Theorem mpt2mptxf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4721 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)}
2 df-mpt2 6640 . . 3 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)}
3 eliunxp 5248 . . . . . . 7 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
43anbi1i 730 . . . . . 6 ((𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
5 mpt2mptxf.1 . . . . . . . . . 10 𝑦𝐶
65nfeq2 2777 . . . . . . . . 9 𝑦 𝑤 = 𝐶
7619.41 2101 . . . . . . . 8 (∃𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
87exbii 1772 . . . . . . 7 (∃𝑥𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ ∃𝑥(∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
9 mpt2mptxf.0 . . . . . . . . 9 𝑥𝐶
109nfeq2 2777 . . . . . . . 8 𝑥 𝑤 = 𝐶
111019.41 2101 . . . . . . 7 (∃𝑥(∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
128, 11bitri 264 . . . . . 6 (∃𝑥𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
13 anass 680 . . . . . . . 8 (((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
14 mpt2mptxf.2 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
1514eqeq2d 2630 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑤 = 𝐶𝑤 = 𝐷))
1615anbi2d 739 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
1716pm5.32i 668 . . . . . . . 8 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
1813, 17bitri 264 . . . . . . 7 (((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
19182exbii 1773 . . . . . 6 (∃𝑥𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
204, 12, 193bitr2i 288 . . . . 5 ((𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
2120opabbii 4708 . . . 4 {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)} = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷))}
22 dfoprab2 6686 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)} = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷))}
2321, 22eqtr4i 2645 . . 3 {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)}
242, 23eqtr4i 2645 . 2 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)}
251, 24eqtr4i 2645 1 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wex 1702  wcel 1988  wnfc 2749  {csn 4168  cop 4174   ciun 4511  {copab 4703  cmpt 4720   × cxp 5102  {coprab 6636  cmpt2 6637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-iun 4513  df-opab 4704  df-mpt 4721  df-xp 5110  df-rel 5111  df-oprab 6639  df-mpt2 6640
This theorem is referenced by:  gsummpt2co  29754
  Copyright terms: Public domain W3C validator