Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptcfsupp Structured version   Visualization version   GIF version

Theorem mptcfsupp 41449
Description: A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
suppmptcfin.b 𝐵 = (Base‘𝑀)
suppmptcfin.r 𝑅 = (Scalar‘𝑀)
suppmptcfin.0 0 = (0g𝑅)
suppmptcfin.1 1 = (1r𝑅)
suppmptcfin.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
Assertion
Ref Expression
mptcfsupp ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹 finSupp 0 )
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝑥,𝑉   𝑥,𝑋   𝑥, 1   𝑥, 0
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem mptcfsupp
StepHypRef Expression
1 suppmptcfin.f . . . 4 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
21funmpt2 5885 . . 3 Fun 𝐹
32a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → Fun 𝐹)
4 suppmptcfin.b . . 3 𝐵 = (Base‘𝑀)
5 suppmptcfin.r . . 3 𝑅 = (Scalar‘𝑀)
6 suppmptcfin.0 . . 3 0 = (0g𝑅)
7 suppmptcfin.1 . . 3 1 = (1r𝑅)
84, 5, 6, 7, 1suppmptcfin 41448 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) ∈ Fin)
9 mptexg 6438 . . . . 5 (𝑉 ∈ 𝒫 𝐵 → (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ∈ V)
101, 9syl5eqel 2702 . . . 4 (𝑉 ∈ 𝒫 𝐵𝐹 ∈ V)
11103ad2ant2 1081 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹 ∈ V)
12 fvex 6158 . . . 4 (0g𝑅) ∈ V
136, 12eqeltri 2694 . . 3 0 ∈ V
14 isfsupp 8223 . . 3 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin)))
1511, 13, 14sylancl 693 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin)))
163, 8, 15mpbir2and 956 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3186  ifcif 4058  𝒫 cpw 4130   class class class wbr 4613  cmpt 4673  Fun wfun 5841  cfv 5847  (class class class)co 6604   supp csupp 7240  Fincfn 7899   finSupp cfsupp 8219  Basecbs 15781  Scalarcsca 15865  0gc0g 16021  1rcur 18422  LModclmod 18784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-supp 7241  df-1o 7505  df-er 7687  df-en 7900  df-fin 7903  df-fsupp 8220
This theorem is referenced by:  lcoss  41513  el0ldep  41543
  Copyright terms: Public domain W3C validator