MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcnv Structured version   Visualization version   GIF version

Theorem mptcnv 5993
Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.)
Hypothesis
Ref Expression
mptcnv.1 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑦𝐶𝑥 = 𝐷)))
Assertion
Ref Expression
mptcnv (𝜑(𝑥𝐴𝐵) = (𝑦𝐶𝐷))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝐶   𝑥,𝐷   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)

Proof of Theorem mptcnv
StepHypRef Expression
1 mptcnv.1 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑦𝐶𝑥 = 𝐷)))
21opabbidv 5125 . 2 (𝜑 → {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶𝑥 = 𝐷)})
3 df-mpt 5140 . . . 4 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
43cnveqi 5740 . . 3 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
5 cnvopab 5992 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
64, 5eqtri 2844 . 2 (𝑥𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
7 df-mpt 5140 . 2 (𝑦𝐶𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶𝑥 = 𝐷)}
82, 6, 73eqtr4g 2881 1 (𝜑(𝑥𝐴𝐵) = (𝑦𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {copab 5121  cmpt 5139  ccnv 5549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-br 5060  df-opab 5122  df-mpt 5140  df-xp 5556  df-rel 5557  df-cnv 5558
This theorem is referenced by:  nvocnv  7032  mptfzshft  15127  fprodrev  15325  pt1hmeo  22408  ballotlemrinv  31786  dssmapnvod  40359
  Copyright terms: Public domain W3C validator