Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcnv Structured version   Visualization version   GIF version

Theorem mptcnv 5522
 Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.)
Hypothesis
Ref Expression
mptcnv.1 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑦𝐶𝑥 = 𝐷)))
Assertion
Ref Expression
mptcnv (𝜑(𝑥𝐴𝐵) = (𝑦𝐶𝐷))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝐶   𝑥,𝐷   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)

Proof of Theorem mptcnv
StepHypRef Expression
1 mptcnv.1 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑦𝐶𝑥 = 𝐷)))
21opabbidv 4707 . 2 (𝜑 → {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶𝑥 = 𝐷)})
3 df-mpt 4721 . . . 4 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
43cnveqi 5286 . . 3 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
5 cnvopab 5521 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
64, 5eqtri 2642 . 2 (𝑥𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
7 df-mpt 4721 . 2 (𝑦𝐶𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶𝑥 = 𝐷)}
82, 6, 73eqtr4g 2679 1 (𝜑(𝑥𝐴𝐵) = (𝑦𝐶𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1481   ∈ wcel 1988  {copab 4703   ↦ cmpt 4720  ◡ccnv 5103 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-mpt 4721  df-xp 5110  df-rel 5111  df-cnv 5112 This theorem is referenced by:  nvocnv  6522  mptfzshft  14491  fsumrev  14492  fprodrev  14688  pt1hmeo  21590  ballotlemrinv  30569  dssmapnvod  38134
 Copyright terms: Public domain W3C validator