MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcoe1fsupp Structured version   Visualization version   GIF version

Theorem mptcoe1fsupp 19349
Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019.)
Hypotheses
Ref Expression
mptcoe1fsupp.p 𝑃 = (Poly1𝑅)
mptcoe1fsupp.b 𝐵 = (Base‘𝑃)
mptcoe1fsupp.0 0 = (0g𝑅)
Assertion
Ref Expression
mptcoe1fsupp ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1𝑀)‘𝑘)) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑅,𝑘
Allowed substitution hints:   𝑃(𝑘)   0 (𝑘)

Proof of Theorem mptcoe1fsupp
Dummy variables 𝑠 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptcoe1fsupp.0 . . . 4 0 = (0g𝑅)
2 fvex 6095 . . . 4 (0g𝑅) ∈ V
31, 2eqeltri 2680 . . 3 0 ∈ V
43a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ V)
5 eqid 2606 . . . 4 (coe1𝑀) = (coe1𝑀)
6 mptcoe1fsupp.b . . . 4 𝐵 = (Base‘𝑃)
7 mptcoe1fsupp.p . . . 4 𝑃 = (Poly1𝑅)
8 eqid 2606 . . . 4 (Base‘𝑅) = (Base‘𝑅)
95, 6, 7, 8coe1fvalcl 19346 . . 3 ((𝑀𝐵𝑘 ∈ ℕ0) → ((coe1𝑀)‘𝑘) ∈ (Base‘𝑅))
109adantll 745 . 2 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑀)‘𝑘) ∈ (Base‘𝑅))
11 simpr 475 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
125, 6, 7, 1, 8coe1fsupp 19348 . . . . . 6 (𝑀𝐵 → (coe1𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑𝑚0) ∣ 𝑐 finSupp 0 })
13 elrabi 3324 . . . . . 6 ((coe1𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑𝑚0) ∣ 𝑐 finSupp 0 } → (coe1𝑀) ∈ ((Base‘𝑅) ↑𝑚0))
1411, 12, 133syl 18 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (coe1𝑀) ∈ ((Base‘𝑅) ↑𝑚0))
1514, 3jctir 558 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1𝑀) ∈ ((Base‘𝑅) ↑𝑚0) ∧ 0 ∈ V))
165, 6, 7, 1coe1sfi 19347 . . . . 5 (𝑀𝐵 → (coe1𝑀) finSupp 0 )
1716adantl 480 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (coe1𝑀) finSupp 0 )
18 fsuppmapnn0ub 12609 . . . 4 (((coe1𝑀) ∈ ((Base‘𝑅) ↑𝑚0) ∧ 0 ∈ V) → ((coe1𝑀) finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 )))
1915, 17, 18sylc 62 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ))
20 csbfv 6125 . . . . . . . 8 𝑥 / 𝑘((coe1𝑀)‘𝑘) = ((coe1𝑀)‘𝑥)
21 simpr 475 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑀)‘𝑥) = 0 ) → ((coe1𝑀)‘𝑥) = 0 )
2220, 21syl5eq 2652 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑀)‘𝑥) = 0 ) → 𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )
2322exp31 627 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑀)‘𝑥) = 0𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2423a2d 29 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ) → (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2524ralimdva 2941 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2625reximdva 2996 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2719, 26mpd 15 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 ))
284, 10, 27mptnn0fsupp 12611 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1𝑀)‘𝑘)) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wral 2892  wrex 2893  {crab 2896  Vcvv 3169  csb 3495   class class class wbr 4574  cmpt 4634  cfv 5787  (class class class)co 6524  𝑚 cmap 7718   finSupp cfsupp 8132   < clt 9927  0cn0 11136  Basecbs 15638  0gc0g 15866  Ringcrg 18313  Poly1cpl1 19311  coe1cco1 19312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-supp 7157  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-map 7720  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-fz 12150  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-ress 15645  df-plusg 15724  df-mulr 15725  df-sca 15727  df-vsca 15728  df-tset 15730  df-ple 15731  df-psr 19120  df-mpl 19122  df-opsr 19124  df-psr1 19314  df-ply1 19316  df-coe1 19317
This theorem is referenced by:  mp2pm2mplem5  20373  cpmidpmatlem3  20435  chcoeffeqlem  20448
  Copyright terms: Public domain W3C validator