Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12d Structured version   Visualization version   GIF version

Theorem mpteq12d 4725
 Description: An equality inference for the maps to notation. Compare mpteq12dv 4724. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
mpteq12d.1 𝑥𝜑
mpteq12d.3 (𝜑𝐴 = 𝐶)
mpteq12d.4 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12d (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))

Proof of Theorem mpteq12d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mpteq12d.1 . . 3 𝑥𝜑
2 nfv 1841 . . 3 𝑦𝜑
3 mpteq12d.3 . . . . 5 (𝜑𝐴 = 𝐶)
43eleq2d 2685 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐶))
5 mpteq12d.4 . . . . 5 (𝜑𝐵 = 𝐷)
65eqeq2d 2630 . . . 4 (𝜑 → (𝑦 = 𝐵𝑦 = 𝐷))
74, 6anbi12d 746 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐶𝑦 = 𝐷)))
81, 2, 7opabbid 4706 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)})
9 df-mpt 4721 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
10 df-mpt 4721 . 2 (𝑥𝐶𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)}
118, 9, 103eqtr4g 2679 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1481  Ⅎwnf 1706   ∈ wcel 1988  {copab 4703   ↦ cmpt 4720 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-opab 4704  df-mpt 4721 This theorem is referenced by:  smflimmpt  40779
 Copyright terms: Public domain W3C validator