MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsuppd Structured version   Visualization version   GIF version

Theorem mptnn0fsuppd 12992
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0 (𝜑0𝑉)
mptnn0fsupp.c ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
mptnn0fsuppd.d (𝑘 = 𝑥𝐶 = 𝐷)
mptnn0fsuppd.s (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ))
Assertion
Ref Expression
mptnn0fsuppd (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝐶,𝑠,𝑥   𝜑,𝑘,𝑠,𝑥   0 ,𝑠,𝑥   𝐷,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑠)   𝐶(𝑘)   𝐷(𝑥,𝑠)   𝑉(𝑥,𝑘,𝑠)   0 (𝑘)

Proof of Theorem mptnn0fsuppd
StepHypRef Expression
1 mptnn0fsupp.0 . 2 (𝜑0𝑉)
2 mptnn0fsupp.c . 2 ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
3 mptnn0fsuppd.s . . 3 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ))
4 vex 3343 . . . . . . . 8 𝑥 ∈ V
5 mptnn0fsuppd.d . . . . . . . 8 (𝑘 = 𝑥𝐶 = 𝐷)
64, 5csbie 3700 . . . . . . 7 𝑥 / 𝑘𝐶 = 𝐷
7 id 22 . . . . . . 7 (𝐷 = 0𝐷 = 0 )
86, 7syl5eq 2806 . . . . . 6 (𝐷 = 0𝑥 / 𝑘𝐶 = 0 )
98imim2i 16 . . . . 5 ((𝑠 < 𝑥𝐷 = 0 ) → (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
109ralimi 3090 . . . 4 (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
1110reximi 3149 . . 3 (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
123, 11syl 17 . 2 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
131, 2, 12mptnn0fsupp 12991 1 (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  csb 3674   class class class wbr 4804  cmpt 4881   finSupp cfsupp 8440   < clt 10266  0cn0 11484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520
This theorem is referenced by:  decpmatfsupp  20776  decpmatmulsumfsupp  20780  pmatcollpw1lem1  20781  pm2mpmhmlem1  20825  cpmidpmatlem3  20879
  Copyright terms: Public domain W3C validator