MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptun Structured version   Visualization version   GIF version

Theorem mptun 6488
Description: Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptun (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶))

Proof of Theorem mptun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5139 . 2 (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶)}
2 df-mpt 5139 . . . 4 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
3 df-mpt 5139 . . . 4 (𝑥𝐵𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)}
42, 3uneq12i 4136 . . 3 ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)})
5 elun 4124 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 625 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑦 = 𝐶))
7 andir 1005 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥𝐴𝑦 = 𝐶) ∨ (𝑥𝐵𝑦 = 𝐶)))
86, 7bitri 277 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥𝐴𝑦 = 𝐶) ∨ (𝑥𝐵𝑦 = 𝐶)))
98opabbii 5125 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = 𝐶) ∨ (𝑥𝐵𝑦 = 𝐶))}
10 unopab 5137 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = 𝐶) ∨ (𝑥𝐵𝑦 = 𝐶))}
119, 10eqtr4i 2847 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶)} = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)})
124, 11eqtr4i 2847 . 2 ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶)}
131, 12eqtr4i 2847 1 (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 398  wo 843   = wceq 1533  wcel 2110  cun 3933  {copab 5120  cmpt 5138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3496  df-un 3940  df-opab 5121  df-mpt 5139
This theorem is referenced by:  fmptap  6926  fmptapd  6927  partfun  30415  esumrnmpt2  31322  ptrest  34885
  Copyright terms: Public domain W3C validator