MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mre1cl Structured version   Visualization version   GIF version

Theorem mre1cl 16194
Description: In any Moore collection the base set is closed. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mre1cl (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)

Proof of Theorem mre1cl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ismre 16190 . 2 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
21simp2bi 1075 1 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987  wne 2790  wral 2908  wss 3560  c0 3897  𝒫 cpw 4136   cint 4447  cfv 5857  Moorecmre 16182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-iota 5820  df-fun 5859  df-fv 5865  df-mre 16186
This theorem is referenced by:  mrerintcl  16197  mreriincl  16198  mreuni  16200  mremre  16204  mrcflem  16206  mrcval  16210  mrccl  16211  mrcun  16222  mrelatglb0  17125  mreclatBAD  17127  mretopd  20836
  Copyright terms: Public domain W3C validator