MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreclatdemoBAD Structured version   Visualization version   GIF version

Theorem mreclatdemoBAD 20948
Description: The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD 17234. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 6651 update): This proof uses the old df-clat 17155 and references the required instance of mreclatBAD 17234 as a hypothesis. When mreclatBAD 17234 is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below.
Hypothesis
Ref Expression
mreclatBAD. (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
Assertion
Ref Expression
mreclatdemoBAD (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)

Proof of Theorem mreclatdemoBAD
StepHypRef Expression
1 fvex 6239 . . . . 5 (TopOpen‘𝑊) ∈ V
21uniex 6995 . . . 4 (TopOpen‘𝑊) ∈ V
3 mremre 16311 . . . 4 ( (TopOpen‘𝑊) ∈ V → (Moore‘ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 (TopOpen‘𝑊)))
42, 3mp1i 13 . . 3 (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 (TopOpen‘𝑊)))
5 inss2 3867 . . . . . 6 (TopSp ∩ LMod) ⊆ LMod
65sseli 3632 . . . . 5 (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ LMod)
7 eqid 2651 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
8 eqid 2651 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
97, 8lssmre 19014 . . . . 5 (𝑊 ∈ LMod → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊)))
106, 9syl 17 . . . 4 (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊)))
11 inss1 3866 . . . . . 6 (TopSp ∩ LMod) ⊆ TopSp
1211sseli 3632 . . . . 5 (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ TopSp)
13 eqid 2651 . . . . . . 7 (TopOpen‘𝑊) = (TopOpen‘𝑊)
147, 13tpsuni 20788 . . . . . 6 (𝑊 ∈ TopSp → (Base‘𝑊) = (TopOpen‘𝑊))
1514fveq2d 6233 . . . . 5 (𝑊 ∈ TopSp → (Moore‘(Base‘𝑊)) = (Moore‘ (TopOpen‘𝑊)))
1612, 15syl 17 . . . 4 (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘(Base‘𝑊)) = (Moore‘ (TopOpen‘𝑊)))
1710, 16eleqtrd 2732 . . 3 (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘ (TopOpen‘𝑊)))
1813tpstop 20789 . . . 4 (𝑊 ∈ TopSp → (TopOpen‘𝑊) ∈ Top)
19 eqid 2651 . . . . 5 (TopOpen‘𝑊) = (TopOpen‘𝑊)
2019cldmre 20930 . . . 4 ((TopOpen‘𝑊) ∈ Top → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘ (TopOpen‘𝑊)))
2112, 18, 203syl 18 . . 3 (𝑊 ∈ (TopSp ∩ LMod) → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘ (TopOpen‘𝑊)))
22 mreincl 16306 . . 3 (((Moore‘ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 (TopOpen‘𝑊)) ∧ (LSubSp‘𝑊) ∈ (Moore‘ (TopOpen‘𝑊)) ∧ (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘ (TopOpen‘𝑊))) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)))
234, 17, 21, 22syl3anc 1366 . 2 (𝑊 ∈ (TopSp ∩ LMod) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)))
24 mreclatBAD. . 2 (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
2523, 24syl 17 1 (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  Vcvv 3231  cin 3606  𝒫 cpw 4191   cuni 4468  cfv 5926  Basecbs 15904  TopOpenctopn 16129  Moorecmre 16289  CLatccla 17154  toInccipo 17198  LModclmod 18911  LSubSpclss 18980  Topctop 20746  TopSpctps 20784  Clsdccld 20868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-mre 16293  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-lss 18981  df-top 20747  df-topon 20764  df-topsp 20785  df-cld 20871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator