MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreiincl Structured version   Visualization version   GIF version

Theorem mreiincl 16177
Description: A nonempty indexed intersection of closed sets is closed. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
mreiincl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆𝐶)
Distinct variable groups:   𝑦,𝐼   𝑦,𝑋   𝑦,𝐶
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem mreiincl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 4519 . . 3 (∀𝑦𝐼 𝑆𝐶 𝑦𝐼 𝑆 = {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆})
213ad2ant3 1082 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆 = {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆})
3 simp1 1059 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝐶 ∈ (Moore‘𝑋))
4 uniiunlem 3669 . . . . 5 (∀𝑦𝐼 𝑆𝐶 → (∀𝑦𝐼 𝑆𝐶 ↔ {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ⊆ 𝐶))
54ibi 256 . . . 4 (∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ⊆ 𝐶)
653ad2ant3 1082 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ⊆ 𝐶)
7 n0 3907 . . . . . 6 (𝐼 ≠ ∅ ↔ ∃𝑦 𝑦𝐼)
8 nfra1 2936 . . . . . . . 8 𝑦𝑦𝐼 𝑆𝐶
9 nfre1 2999 . . . . . . . . . 10 𝑦𝑦𝐼 𝑠 = 𝑆
109nfab 2765 . . . . . . . . 9 𝑦{𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆}
11 nfcv 2761 . . . . . . . . 9 𝑦
1210, 11nfne 2890 . . . . . . . 8 𝑦{𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅
138, 12nfim 1822 . . . . . . 7 𝑦(∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅)
14 rsp 2924 . . . . . . . . . 10 (∀𝑦𝐼 𝑆𝐶 → (𝑦𝐼𝑆𝐶))
1514com12 32 . . . . . . . . 9 (𝑦𝐼 → (∀𝑦𝐼 𝑆𝐶𝑆𝐶))
16 elisset 3201 . . . . . . . . . . 11 (𝑆𝐶 → ∃𝑠 𝑠 = 𝑆)
17 rspe 2997 . . . . . . . . . . . 12 ((𝑦𝐼 ∧ ∃𝑠 𝑠 = 𝑆) → ∃𝑦𝐼𝑠 𝑠 = 𝑆)
1817ex 450 . . . . . . . . . . 11 (𝑦𝐼 → (∃𝑠 𝑠 = 𝑆 → ∃𝑦𝐼𝑠 𝑠 = 𝑆))
1916, 18syl5 34 . . . . . . . . . 10 (𝑦𝐼 → (𝑆𝐶 → ∃𝑦𝐼𝑠 𝑠 = 𝑆))
20 rexcom4 3211 . . . . . . . . . 10 (∃𝑦𝐼𝑠 𝑠 = 𝑆 ↔ ∃𝑠𝑦𝐼 𝑠 = 𝑆)
2119, 20syl6ib 241 . . . . . . . . 9 (𝑦𝐼 → (𝑆𝐶 → ∃𝑠𝑦𝐼 𝑠 = 𝑆))
2215, 21syld 47 . . . . . . . 8 (𝑦𝐼 → (∀𝑦𝐼 𝑆𝐶 → ∃𝑠𝑦𝐼 𝑠 = 𝑆))
23 abn0 3928 . . . . . . . 8 ({𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅ ↔ ∃𝑠𝑦𝐼 𝑠 = 𝑆)
2422, 23syl6ibr 242 . . . . . . 7 (𝑦𝐼 → (∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅))
2513, 24exlimi 2084 . . . . . 6 (∃𝑦 𝑦𝐼 → (∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅))
267, 25sylbi 207 . . . . 5 (𝐼 ≠ ∅ → (∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅))
2726imp 445 . . . 4 ((𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅)
28273adant1 1077 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅)
29 mreintcl 16176 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ⊆ 𝐶 ∧ {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ∈ 𝐶)
303, 6, 28, 29syl3anc 1323 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ∈ 𝐶)
312, 30eqeltrd 2698 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wne 2790  wral 2907  wrex 2908  wss 3555  c0 3891   cint 4440   ciin 4486  cfv 5847  Moorecmre 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-int 4441  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-mre 16167
This theorem is referenced by:  mreriincl  16179  mretopd  20806
  Copyright terms: Public domain W3C validator