MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreiincl Structured version   Visualization version   GIF version

Theorem mreiincl 16855
Description: A nonempty indexed intersection of closed sets is closed. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
mreiincl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆𝐶)
Distinct variable groups:   𝑦,𝐼   𝑦,𝑋   𝑦,𝐶
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem mreiincl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 4948 . . 3 (∀𝑦𝐼 𝑆𝐶 𝑦𝐼 𝑆 = {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆})
213ad2ant3 1127 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆 = {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆})
3 simp1 1128 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝐶 ∈ (Moore‘𝑋))
4 uniiunlem 4058 . . . . 5 (∀𝑦𝐼 𝑆𝐶 → (∀𝑦𝐼 𝑆𝐶 ↔ {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ⊆ 𝐶))
54ibi 268 . . . 4 (∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ⊆ 𝐶)
653ad2ant3 1127 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ⊆ 𝐶)
7 n0 4307 . . . . . 6 (𝐼 ≠ ∅ ↔ ∃𝑦 𝑦𝐼)
8 nfra1 3216 . . . . . . . 8 𝑦𝑦𝐼 𝑆𝐶
9 nfre1 3303 . . . . . . . . . 10 𝑦𝑦𝐼 𝑠 = 𝑆
109nfab 2981 . . . . . . . . 9 𝑦{𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆}
11 nfcv 2974 . . . . . . . . 9 𝑦
1210, 11nfne 3116 . . . . . . . 8 𝑦{𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅
138, 12nfim 1888 . . . . . . 7 𝑦(∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅)
14 rsp 3202 . . . . . . . . . 10 (∀𝑦𝐼 𝑆𝐶 → (𝑦𝐼𝑆𝐶))
1514com12 32 . . . . . . . . 9 (𝑦𝐼 → (∀𝑦𝐼 𝑆𝐶𝑆𝐶))
16 elisset 3503 . . . . . . . . . . 11 (𝑆𝐶 → ∃𝑠 𝑠 = 𝑆)
17 rspe 3301 . . . . . . . . . . . 12 ((𝑦𝐼 ∧ ∃𝑠 𝑠 = 𝑆) → ∃𝑦𝐼𝑠 𝑠 = 𝑆)
1817ex 413 . . . . . . . . . . 11 (𝑦𝐼 → (∃𝑠 𝑠 = 𝑆 → ∃𝑦𝐼𝑠 𝑠 = 𝑆))
1916, 18syl5 34 . . . . . . . . . 10 (𝑦𝐼 → (𝑆𝐶 → ∃𝑦𝐼𝑠 𝑠 = 𝑆))
20 rexcom4 3246 . . . . . . . . . 10 (∃𝑦𝐼𝑠 𝑠 = 𝑆 ↔ ∃𝑠𝑦𝐼 𝑠 = 𝑆)
2119, 20syl6ib 252 . . . . . . . . 9 (𝑦𝐼 → (𝑆𝐶 → ∃𝑠𝑦𝐼 𝑠 = 𝑆))
2215, 21syld 47 . . . . . . . 8 (𝑦𝐼 → (∀𝑦𝐼 𝑆𝐶 → ∃𝑠𝑦𝐼 𝑠 = 𝑆))
23 abn0 4333 . . . . . . . 8 ({𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅ ↔ ∃𝑠𝑦𝐼 𝑠 = 𝑆)
2422, 23syl6ibr 253 . . . . . . 7 (𝑦𝐼 → (∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅))
2513, 24exlimi 2207 . . . . . 6 (∃𝑦 𝑦𝐼 → (∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅))
267, 25sylbi 218 . . . . 5 (𝐼 ≠ ∅ → (∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅))
2726imp 407 . . . 4 ((𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅)
28273adant1 1122 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅)
29 mreintcl 16854 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ⊆ 𝐶 ∧ {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ∈ 𝐶)
303, 6, 28, 29syl3anc 1363 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ∈ 𝐶)
312, 30eqeltrd 2910 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1079   = wceq 1528  wex 1771  wcel 2105  {cab 2796  wne 3013  wral 3135  wrex 3136  wss 3933  c0 4288   cint 4867   ciin 4911  cfv 6348  Moorecmre 16841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-int 4868  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-mre 16845
This theorem is referenced by:  mreriincl  16857  mretopd  21628
  Copyright terms: Public domain W3C validator