MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqvd Structured version   Visualization version   GIF version

Theorem mrieqvd 16903
Description: In a Moore system, a set is independent if and only if, for all elements of the set, the closure of the set with the element removed is unequal to the closure of the original set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrieqvd.2 𝑁 = (mrCls‘𝐴)
mrieqvd.3 𝐼 = (mrInd‘𝐴)
mrieqvd.4 (𝜑𝑆𝑋)
Assertion
Ref Expression
mrieqvd (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem mrieqvd
StepHypRef Expression
1 mrieqvd.2 . . 3 𝑁 = (mrCls‘𝐴)
2 mrieqvd.3 . . 3 𝐼 = (mrInd‘𝐴)
3 mrieqvd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
4 mrieqvd.4 . . 3 (𝜑𝑆𝑋)
51, 2, 3, 4ismri2d 16898 . 2 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
63adantr 483 . . . . 5 ((𝜑𝑥𝑆) → 𝐴 ∈ (Moore‘𝑋))
74adantr 483 . . . . 5 ((𝜑𝑥𝑆) → 𝑆𝑋)
8 simpr 487 . . . . 5 ((𝜑𝑥𝑆) → 𝑥𝑆)
96, 1, 7, 8mrieqvlemd 16894 . . . 4 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁𝑆)))
109necon3bbid 3053 . . 3 ((𝜑𝑥𝑆) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
1110ralbidva 3196 . 2 (𝜑 → (∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
125, 11bitrd 281 1 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  cdif 3933  wss 3936  {csn 4561  cfv 6350  Moorecmre 16847  mrClscmrc 16848  mrIndcmri 16849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-int 4870  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-mre 16851  df-mrc 16852  df-mri 16853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator