MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrissmrcd Structured version   Visualization version   GIF version

Theorem mrissmrcd 16905
Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd 16892, and so are equal by mrieqv2d 16904.) (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrissmrcd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrissmrcd.2 𝑁 = (mrCls‘𝐴)
mrissmrcd.3 𝐼 = (mrInd‘𝐴)
mrissmrcd.4 (𝜑𝑆 ⊆ (𝑁𝑇))
mrissmrcd.5 (𝜑𝑇𝑆)
mrissmrcd.6 (𝜑𝑆𝐼)
Assertion
Ref Expression
mrissmrcd (𝜑𝑆 = 𝑇)

Proof of Theorem mrissmrcd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mrissmrcd.1 . . . . . 6 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrissmrcd.2 . . . . . 6 𝑁 = (mrCls‘𝐴)
3 mrissmrcd.4 . . . . . 6 (𝜑𝑆 ⊆ (𝑁𝑇))
4 mrissmrcd.5 . . . . . 6 (𝜑𝑇𝑆)
51, 2, 3, 4mressmrcd 16892 . . . . 5 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
6 pssne 4072 . . . . . . 7 ((𝑁𝑇) ⊊ (𝑁𝑆) → (𝑁𝑇) ≠ (𝑁𝑆))
76necomd 3071 . . . . . 6 ((𝑁𝑇) ⊊ (𝑁𝑆) → (𝑁𝑆) ≠ (𝑁𝑇))
87necon2bi 3046 . . . . 5 ((𝑁𝑆) = (𝑁𝑇) → ¬ (𝑁𝑇) ⊊ (𝑁𝑆))
95, 8syl 17 . . . 4 (𝜑 → ¬ (𝑁𝑇) ⊊ (𝑁𝑆))
10 mrissmrcd.6 . . . . . 6 (𝜑𝑆𝐼)
11 mrissmrcd.3 . . . . . . 7 𝐼 = (mrInd‘𝐴)
1211, 1, 10mrissd 16901 . . . . . . 7 (𝜑𝑆𝑋)
131, 2, 11, 12mrieqv2d 16904 . . . . . 6 (𝜑 → (𝑆𝐼 ↔ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))))
1410, 13mpbid 234 . . . . 5 (𝜑 → ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)))
1510, 4ssexd 5220 . . . . . 6 (𝜑𝑇 ∈ V)
16 simpr 487 . . . . . . . 8 ((𝜑𝑠 = 𝑇) → 𝑠 = 𝑇)
1716psseq1d 4068 . . . . . . 7 ((𝜑𝑠 = 𝑇) → (𝑠𝑆𝑇𝑆))
1816fveq2d 6668 . . . . . . . 8 ((𝜑𝑠 = 𝑇) → (𝑁𝑠) = (𝑁𝑇))
1918psseq1d 4068 . . . . . . 7 ((𝜑𝑠 = 𝑇) → ((𝑁𝑠) ⊊ (𝑁𝑆) ↔ (𝑁𝑇) ⊊ (𝑁𝑆)))
2017, 19imbi12d 347 . . . . . 6 ((𝜑𝑠 = 𝑇) → ((𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ↔ (𝑇𝑆 → (𝑁𝑇) ⊊ (𝑁𝑆))))
2115, 20spcdv 3592 . . . . 5 (𝜑 → (∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) → (𝑇𝑆 → (𝑁𝑇) ⊊ (𝑁𝑆))))
2214, 21mpd 15 . . . 4 (𝜑 → (𝑇𝑆 → (𝑁𝑇) ⊊ (𝑁𝑆)))
239, 22mtod 200 . . 3 (𝜑 → ¬ 𝑇𝑆)
24 sspss 4075 . . . . 5 (𝑇𝑆 ↔ (𝑇𝑆𝑇 = 𝑆))
254, 24sylib 220 . . . 4 (𝜑 → (𝑇𝑆𝑇 = 𝑆))
2625ord 860 . . 3 (𝜑 → (¬ 𝑇𝑆𝑇 = 𝑆))
2723, 26mpd 15 . 2 (𝜑𝑇 = 𝑆)
2827eqcomd 2827 1 (𝜑𝑆 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  wal 1531   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935  wpss 3936  cfv 6349  Moorecmre 16847  mrClscmrc 16848  mrIndcmri 16849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-mre 16851  df-mrc 16852  df-mri 16853
This theorem is referenced by:  mreexexlem3d  16911  acsmap2d  17783
  Copyright terms: Public domain W3C validator