Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubcv Structured version   Visualization version   GIF version

Theorem mrsubcv 31112
Description: The value of a substituted singleton. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubcv ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))

Proof of Theorem mrsubcv
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp3 1061 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑋 ∈ (𝐶𝑉))
21s1cld 13322 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“𝑋”⟩ ∈ Word (𝐶𝑉))
3 elun 3731 . . . . . . 7 (𝑋 ∈ (𝐶𝑉) ↔ (𝑋𝐶𝑋𝑉))
4 elfvex 6178 . . . . . . . . 9 (𝑋 ∈ (mCN‘𝑇) → 𝑇 ∈ V)
5 mrsubffval.c . . . . . . . . 9 𝐶 = (mCN‘𝑇)
64, 5eleq2s 2716 . . . . . . . 8 (𝑋𝐶𝑇 ∈ V)
7 elfvex 6178 . . . . . . . . 9 (𝑋 ∈ (mVR‘𝑇) → 𝑇 ∈ V)
8 mrsubffval.v . . . . . . . . 9 𝑉 = (mVR‘𝑇)
97, 8eleq2s 2716 . . . . . . . 8 (𝑋𝑉𝑇 ∈ V)
106, 9jaoi 394 . . . . . . 7 ((𝑋𝐶𝑋𝑉) → 𝑇 ∈ V)
113, 10sylbi 207 . . . . . 6 (𝑋 ∈ (𝐶𝑉) → 𝑇 ∈ V)
12113ad2ant3 1082 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑇 ∈ V)
13 mrsubffval.r . . . . . 6 𝑅 = (mREx‘𝑇)
145, 8, 13mrexval 31103 . . . . 5 (𝑇 ∈ V → 𝑅 = Word (𝐶𝑉))
1512, 14syl 17 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑅 = Word (𝐶𝑉))
162, 15eleqtrrd 2701 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“𝑋”⟩ ∈ 𝑅)
17 mrsubffval.s . . . 4 𝑆 = (mRSubst‘𝑇)
18 eqid 2621 . . . 4 (freeMnd‘(𝐶𝑉)) = (freeMnd‘(𝐶𝑉))
195, 8, 13, 17, 18mrsubval 31111 . . 3 ((𝐹:𝐴𝑅𝐴𝑉 ∧ ⟨“𝑋”⟩ ∈ 𝑅) → ((𝑆𝐹)‘⟨“𝑋”⟩) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)))
2016, 19syld3an3 1368 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)))
21 simpl1 1062 . . . . . . . . 9 (((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝐹:𝐴𝑅)
2221ffvelrnda 6315 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ 𝑅)
2315ad2antrr 761 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → 𝑅 = Word (𝐶𝑉))
2422, 23eleqtrd 2700 . . . . . . 7 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ Word (𝐶𝑉))
25 simplr 791 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝐴) → 𝑣 ∈ (𝐶𝑉))
2625s1cld 13322 . . . . . . 7 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝐴) → ⟨“𝑣”⟩ ∈ Word (𝐶𝑉))
2724, 26ifclda 4092 . . . . . 6 (((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) → if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩) ∈ Word (𝐶𝑉))
28 eqid 2621 . . . . . 6 (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))
2927, 28fmptd 6340 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉))
30 s1co 13516 . . . . 5 ((𝑋 ∈ (𝐶𝑉) ∧ (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩)
311, 29, 30syl2anc 692 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩)
32 eleq1 2686 . . . . . . . 8 (𝑣 = 𝑋 → (𝑣𝐴𝑋𝐴))
33 fveq2 6148 . . . . . . . 8 (𝑣 = 𝑋 → (𝐹𝑣) = (𝐹𝑋))
34 s1eq 13319 . . . . . . . 8 (𝑣 = 𝑋 → ⟨“𝑣”⟩ = ⟨“𝑋”⟩)
3532, 33, 34ifbieq12d 4085 . . . . . . 7 (𝑣 = 𝑋 → if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
36 fvex 6158 . . . . . . . 8 (𝐹𝑋) ∈ V
37 s1cli 13323 . . . . . . . . 9 ⟨“𝑋”⟩ ∈ Word V
3837elexi 3199 . . . . . . . 8 ⟨“𝑋”⟩ ∈ V
3936, 38ifex 4128 . . . . . . 7 if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ V
4035, 28, 39fvmpt 6239 . . . . . 6 (𝑋 ∈ (𝐶𝑉) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
41403ad2ant3 1082 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
4241s1eqd 13320 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩ = ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩)
4331, 42eqtrd 2655 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩)
4443oveq2d 6620 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)) = ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩))
4529, 1ffvelrnd 6316 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) ∈ Word (𝐶𝑉))
4641, 45eqeltrrd 2699 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ Word (𝐶𝑉))
47 fvex 6158 . . . . . . . 8 (mCN‘𝑇) ∈ V
485, 47eqeltri 2694 . . . . . . 7 𝐶 ∈ V
49 fvex 6158 . . . . . . . 8 (mVR‘𝑇) ∈ V
508, 49eqeltri 2694 . . . . . . 7 𝑉 ∈ V
5148, 50unex 6909 . . . . . 6 (𝐶𝑉) ∈ V
52 eqid 2621 . . . . . . 7 (Base‘(freeMnd‘(𝐶𝑉))) = (Base‘(freeMnd‘(𝐶𝑉)))
5318, 52frmdbas 17310 . . . . . 6 ((𝐶𝑉) ∈ V → (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉))
5451, 53ax-mp 5 . . . . 5 (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉)
5554eqcomi 2630 . . . 4 Word (𝐶𝑉) = (Base‘(freeMnd‘(𝐶𝑉)))
5655gsumws1 17297 . . 3 (if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ Word (𝐶𝑉) → ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
5746, 56syl 17 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
5820, 44, 573eqtrd 2659 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3186  cun 3553  wss 3555  ifcif 4058  cmpt 4673  ccom 5078  wf 5843  cfv 5847  (class class class)co 6604  Word cword 13230  ⟨“cs1 13233  Basecbs 15781   Σg cgsu 16022  freeMndcfrmd 17305  mCNcmcn 31062  mVRcmvar 31063  mRExcmrex 31068  mRSubstcmrsub 31072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-word 13238  df-s1 13241  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-0g 16023  df-gsum 16024  df-frmd 17307  df-mrex 31088  df-mrsub 31092
This theorem is referenced by:  mrsubvr  31113  mrsubcn  31121
  Copyright terms: Public domain W3C validator