Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubff Structured version   Visualization version   GIF version

Theorem mrsubff 31535
Description: A substitution is a function from 𝑅 to 𝑅. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubff (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))

Proof of Theorem mrsubff
Dummy variables 𝑒 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6239 . . . . . . . . 9 (mCN‘𝑇) ∈ V
2 mrsubvr.v . . . . . . . . . 10 𝑉 = (mVR‘𝑇)
3 fvex 6239 . . . . . . . . . 10 (mVR‘𝑇) ∈ V
42, 3eqeltri 2726 . . . . . . . . 9 𝑉 ∈ V
51, 4unex 6998 . . . . . . . 8 ((mCN‘𝑇) ∪ 𝑉) ∈ V
6 eqid 2651 . . . . . . . . 9 (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) = (freeMnd‘((mCN‘𝑇) ∪ 𝑉))
76frmdmnd 17443 . . . . . . . 8 (((mCN‘𝑇) ∪ 𝑉) ∈ V → (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd)
85, 7mp1i 13 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd)
9 simpr 476 . . . . . . . . 9 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → 𝑒𝑅)
10 eqid 2651 . . . . . . . . . . 11 (mCN‘𝑇) = (mCN‘𝑇)
11 mrsubvr.r . . . . . . . . . . 11 𝑅 = (mREx‘𝑇)
1210, 2, 11mrexval 31524 . . . . . . . . . 10 (𝑇𝑊𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
1312ad2antrr 762 . . . . . . . . 9 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
149, 13eleqtrd 2732 . . . . . . . 8 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → 𝑒 ∈ Word ((mCN‘𝑇) ∪ 𝑉))
15 elpmi 7918 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅pm 𝑉) → (𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉))
1615simpld 474 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅pm 𝑉) → 𝑓:dom 𝑓𝑅)
1716ad3antlr 767 . . . . . . . . . . . 12 ((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) → 𝑓:dom 𝑓𝑅)
1817ffvelrnda 6399 . . . . . . . . . . 11 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → (𝑓𝑣) ∈ 𝑅)
1913ad2antrr 762 . . . . . . . . . . 11 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
2018, 19eleqtrd 2732 . . . . . . . . . 10 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → (𝑓𝑣) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
21 simplr 807 . . . . . . . . . . 11 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ ¬ 𝑣 ∈ dom 𝑓) → 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉))
2221s1cld 13419 . . . . . . . . . 10 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ ¬ 𝑣 ∈ dom 𝑓) → ⟨“𝑣”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉))
2320, 22ifclda 4153 . . . . . . . . 9 ((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) → if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
24 eqid 2651 . . . . . . . . 9 (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
2523, 24fmptd 6425 . . . . . . . 8 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ 𝑉)⟶Word ((mCN‘𝑇) ∪ 𝑉))
26 wrdco 13623 . . . . . . . 8 ((𝑒 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ 𝑉)⟶Word ((mCN‘𝑇) ∪ 𝑉)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉))
2714, 25, 26syl2anc 694 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉))
28 eqid 2651 . . . . . . . . . . 11 (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉)))
296, 28frmdbas 17436 . . . . . . . . . 10 (((mCN‘𝑇) ∪ 𝑉) ∈ V → (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = Word ((mCN‘𝑇) ∪ 𝑉))
305, 29ax-mp 5 . . . . . . . . 9 (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = Word ((mCN‘𝑇) ∪ 𝑉)
3130eqcomi 2660 . . . . . . . 8 Word ((mCN‘𝑇) ∪ 𝑉) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉)))
3231gsumwcl 17424 . . . . . . 7 (((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉)) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
338, 27, 32syl2anc 694 . . . . . 6 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
3433, 13eleqtrrd 2733 . . . . 5 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) ∈ 𝑅)
35 eqid 2651 . . . . 5 (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))
3634, 35fmptd 6425 . . . 4 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))):𝑅𝑅)
37 fvex 6239 . . . . . 6 (mREx‘𝑇) ∈ V
3811, 37eqeltri 2726 . . . . 5 𝑅 ∈ V
3938, 38elmap 7928 . . . 4 ((𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ (𝑅𝑚 𝑅) ↔ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))):𝑅𝑅)
4036, 39sylibr 224 . . 3 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ (𝑅𝑚 𝑅))
41 eqid 2651 . . 3 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
4240, 41fmptd 6425 . 2 (𝑇𝑊 → (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))):(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))
43 mrsubvr.s . . . 4 𝑆 = (mRSubst‘𝑇)
4410, 2, 11, 43, 6mrsubffval 31530 . . 3 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
4544feq1d 6068 . 2 (𝑇𝑊 → (𝑆:(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅) ↔ (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))):(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅)))
4642, 45mpbird 247 1 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cun 3605  wss 3607  ifcif 4119  cmpt 4762  dom cdm 5143  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  pm cpm 7900  Word cword 13323  ⟨“cs1 13326  Basecbs 15904   Σg cgsu 16148  Mndcmnd 17341  freeMndcfrmd 17431  mCNcmcn 31483  mVRcmvar 31484  mRExcmrex 31489  mRSubstcmrsub 31493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-frmd 17433  df-mrex 31509  df-mrsub 31513
This theorem is referenced by:  mrsubrn  31536  mrsubff1  31537  mrsub0  31539  mrsubf  31540  mrsubccat  31541  mrsubcn  31542  elmrsubrn  31543  elmsubrn  31551  msubrn  31552  msubff  31553  msubff1  31579
  Copyright terms: Public domain W3C validator