Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubff Structured version   Visualization version   GIF version

Theorem mrsubff 32754
Description: A substitution is a function from 𝑅 to 𝑅. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubff (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅))

Proof of Theorem mrsubff
Dummy variables 𝑒 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6677 . . . . . . . . 9 (mCN‘𝑇) ∈ V
2 mrsubvr.v . . . . . . . . . 10 𝑉 = (mVR‘𝑇)
32fvexi 6678 . . . . . . . . 9 𝑉 ∈ V
41, 3unex 7463 . . . . . . . 8 ((mCN‘𝑇) ∪ 𝑉) ∈ V
5 eqid 2821 . . . . . . . . 9 (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) = (freeMnd‘((mCN‘𝑇) ∪ 𝑉))
65frmdmnd 18018 . . . . . . . 8 (((mCN‘𝑇) ∪ 𝑉) ∈ V → (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd)
74, 6mp1i 13 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd)
8 simpr 487 . . . . . . . . 9 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → 𝑒𝑅)
9 eqid 2821 . . . . . . . . . . 11 (mCN‘𝑇) = (mCN‘𝑇)
10 mrsubvr.r . . . . . . . . . . 11 𝑅 = (mREx‘𝑇)
119, 2, 10mrexval 32743 . . . . . . . . . 10 (𝑇𝑊𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
1211ad2antrr 724 . . . . . . . . 9 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
138, 12eleqtrd 2915 . . . . . . . 8 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → 𝑒 ∈ Word ((mCN‘𝑇) ∪ 𝑉))
14 elpmi 8419 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅pm 𝑉) → (𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉))
1514simpld 497 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅pm 𝑉) → 𝑓:dom 𝑓𝑅)
1615ad3antlr 729 . . . . . . . . . . . 12 ((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) → 𝑓:dom 𝑓𝑅)
1716ffvelrnda 6845 . . . . . . . . . . 11 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → (𝑓𝑣) ∈ 𝑅)
1812ad2antrr 724 . . . . . . . . . . 11 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
1917, 18eleqtrd 2915 . . . . . . . . . 10 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → (𝑓𝑣) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
20 simplr 767 . . . . . . . . . . 11 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ ¬ 𝑣 ∈ dom 𝑓) → 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉))
2120s1cld 13951 . . . . . . . . . 10 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ ¬ 𝑣 ∈ dom 𝑓) → ⟨“𝑣”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉))
2219, 21ifclda 4500 . . . . . . . . 9 ((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) → if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
2322fmpttd 6873 . . . . . . . 8 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ 𝑉)⟶Word ((mCN‘𝑇) ∪ 𝑉))
24 wrdco 14187 . . . . . . . 8 ((𝑒 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ 𝑉)⟶Word ((mCN‘𝑇) ∪ 𝑉)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉))
2513, 23, 24syl2anc 586 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉))
26 eqid 2821 . . . . . . . . . . 11 (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉)))
275, 26frmdbas 18011 . . . . . . . . . 10 (((mCN‘𝑇) ∪ 𝑉) ∈ V → (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = Word ((mCN‘𝑇) ∪ 𝑉))
284, 27ax-mp 5 . . . . . . . . 9 (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = Word ((mCN‘𝑇) ∪ 𝑉)
2928eqcomi 2830 . . . . . . . 8 Word ((mCN‘𝑇) ∪ 𝑉) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉)))
3029gsumwcl 17997 . . . . . . 7 (((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉)) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
317, 25, 30syl2anc 586 . . . . . 6 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
3231, 12eleqtrrd 2916 . . . . 5 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) ∈ 𝑅)
3332fmpttd 6873 . . . 4 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))):𝑅𝑅)
3410fvexi 6678 . . . . 5 𝑅 ∈ V
3534, 34elmap 8429 . . . 4 ((𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ (𝑅m 𝑅) ↔ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))):𝑅𝑅)
3633, 35sylibr 236 . . 3 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ (𝑅m 𝑅))
3736fmpttd 6873 . 2 (𝑇𝑊 → (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
38 mrsubvr.s . . . 4 𝑆 = (mRSubst‘𝑇)
399, 2, 10, 38, 5mrsubffval 32749 . . 3 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
4039feq1d 6493 . 2 (𝑇𝑊 → (𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅) ↔ (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))):(𝑅pm 𝑉)⟶(𝑅m 𝑅)))
4137, 40mpbird 259 1 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  cun 3933  wss 3935  ifcif 4466  cmpt 5138  dom cdm 5549  ccom 5553  wf 6345  cfv 6349  (class class class)co 7150  m cmap 8400  pm cpm 8401  Word cword 13855  ⟨“cs1 13943  Basecbs 16477   Σg cgsu 16708  Mndcmnd 17905  freeMndcfrmd 18006  mCNcmcn 32702  mVRcmvar 32703  mRExcmrex 32708  mRSubstcmrsub 32712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-gsum 16710  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-frmd 18008  df-mrex 32728  df-mrsub 32732
This theorem is referenced by:  mrsubrn  32755  mrsubff1  32756  mrsub0  32758  mrsubf  32759  mrsubccat  32760  mrsubcn  32761  elmrsubrn  32762  elmsubrn  32770  msubrn  32771  msubff  32772  msubff1  32798
  Copyright terms: Public domain W3C validator