Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubff1 Structured version   Visualization version   GIF version

Theorem mrsubff1 31154
 Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubff1 (𝑇𝑊 → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝑅𝑚 𝑅))

Proof of Theorem mrsubff1
Dummy variables 𝑓 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubvr.v . . . 4 𝑉 = (mVR‘𝑇)
2 mrsubvr.r . . . 4 𝑅 = (mREx‘𝑇)
3 mrsubvr.s . . . 4 𝑆 = (mRSubst‘𝑇)
41, 2, 3mrsubff 31152 . . 3 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))
5 mapsspm 7843 . . . 4 (𝑅𝑚 𝑉) ⊆ (𝑅pm 𝑉)
65a1i 11 . . 3 (𝑇𝑊 → (𝑅𝑚 𝑉) ⊆ (𝑅pm 𝑉))
74, 6fssresd 6033 . 2 (𝑇𝑊 → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)⟶(𝑅𝑚 𝑅))
8 fveq1 6152 . . . . . 6 ((𝑆𝑓) = (𝑆𝑔) → ((𝑆𝑓)‘⟨“𝑣”⟩) = ((𝑆𝑔)‘⟨“𝑣”⟩))
9 simplrl 799 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ 𝑣𝑉) → 𝑓 ∈ (𝑅𝑚 𝑉))
10 elmapi 7831 . . . . . . . . 9 (𝑓 ∈ (𝑅𝑚 𝑉) → 𝑓:𝑉𝑅)
119, 10syl 17 . . . . . . . 8 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ 𝑣𝑉) → 𝑓:𝑉𝑅)
12 ssid 3608 . . . . . . . . 9 𝑉𝑉
1312a1i 11 . . . . . . . 8 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ 𝑣𝑉) → 𝑉𝑉)
14 simpr 477 . . . . . . . 8 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ 𝑣𝑉) → 𝑣𝑉)
151, 2, 3mrsubvr 31151 . . . . . . . 8 ((𝑓:𝑉𝑅𝑉𝑉𝑣𝑉) → ((𝑆𝑓)‘⟨“𝑣”⟩) = (𝑓𝑣))
1611, 13, 14, 15syl3anc 1323 . . . . . . 7 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑓)‘⟨“𝑣”⟩) = (𝑓𝑣))
17 simplrr 800 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ 𝑣𝑉) → 𝑔 ∈ (𝑅𝑚 𝑉))
18 elmapi 7831 . . . . . . . . 9 (𝑔 ∈ (𝑅𝑚 𝑉) → 𝑔:𝑉𝑅)
1917, 18syl 17 . . . . . . . 8 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ 𝑣𝑉) → 𝑔:𝑉𝑅)
201, 2, 3mrsubvr 31151 . . . . . . . 8 ((𝑔:𝑉𝑅𝑉𝑉𝑣𝑉) → ((𝑆𝑔)‘⟨“𝑣”⟩) = (𝑔𝑣))
2119, 13, 14, 20syl3anc 1323 . . . . . . 7 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑔)‘⟨“𝑣”⟩) = (𝑔𝑣))
2216, 21eqeq12d 2636 . . . . . 6 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ 𝑣𝑉) → (((𝑆𝑓)‘⟨“𝑣”⟩) = ((𝑆𝑔)‘⟨“𝑣”⟩) ↔ (𝑓𝑣) = (𝑔𝑣)))
238, 22syl5ib 234 . . . . 5 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑓) = (𝑆𝑔) → (𝑓𝑣) = (𝑔𝑣)))
2423ralrimdva 2964 . . . 4 ((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → ((𝑆𝑓) = (𝑆𝑔) → ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
25 fvres 6169 . . . . . 6 (𝑓 ∈ (𝑅𝑚 𝑉) → ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = (𝑆𝑓))
26 fvres 6169 . . . . . 6 (𝑔 ∈ (𝑅𝑚 𝑉) → ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) = (𝑆𝑔))
2725, 26eqeqan12d 2637 . . . . 5 ((𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
2827adantl 482 . . . 4 ((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → (((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
29 ffn 6007 . . . . . . 7 (𝑓:𝑉𝑅𝑓 Fn 𝑉)
30 ffn 6007 . . . . . . 7 (𝑔:𝑉𝑅𝑔 Fn 𝑉)
31 eqfnfv 6272 . . . . . . 7 ((𝑓 Fn 𝑉𝑔 Fn 𝑉) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
3229, 30, 31syl2an 494 . . . . . 6 ((𝑓:𝑉𝑅𝑔:𝑉𝑅) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
3310, 18, 32syl2an 494 . . . . 5 ((𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
3433adantl 482 . . . 4 ((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
3524, 28, 343imtr4d 283 . . 3 ((𝑇𝑊 ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → (((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) → 𝑓 = 𝑔))
3635ralrimivva 2966 . 2 (𝑇𝑊 → ∀𝑓 ∈ (𝑅𝑚 𝑉)∀𝑔 ∈ (𝑅𝑚 𝑉)(((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) → 𝑓 = 𝑔))
37 dff13 6472 . 2 ((𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝑅𝑚 𝑅) ↔ ((𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)⟶(𝑅𝑚 𝑅) ∧ ∀𝑓 ∈ (𝑅𝑚 𝑉)∀𝑔 ∈ (𝑅𝑚 𝑉)(((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) → 𝑓 = 𝑔)))
387, 36, 37sylanbrc 697 1 (𝑇𝑊 → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝑅𝑚 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907   ⊆ wss 3559   ↾ cres 5081   Fn wfn 5847  ⟶wf 5848  –1-1→wf1 5849  ‘cfv 5852  (class class class)co 6610   ↑𝑚 cmap 7809   ↑pm cpm 7810  ⟨“cs1 13241  mVRcmvar 31101  mRExcmrex 31106  mRSubstcmrsub 31110 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-word 13246  df-concat 13248  df-s1 13249  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-0g 16034  df-gsum 16035  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-frmd 17318  df-mrex 31126  df-mrsub 31130 This theorem is referenced by:  mrsubff1o  31155  msubff1  31196
 Copyright terms: Public domain W3C validator