Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubfval Structured version   Visualization version   GIF version

Theorem mrsubfval 30461
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
mrsubffval.g 𝐺 = (freeMnd‘(𝐶𝑉))
Assertion
Ref Expression
mrsubfval ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
Distinct variable groups:   𝑣,𝑒,𝐴   𝐶,𝑒,𝑣   𝑒,𝐹,𝑣   𝑅,𝑒,𝑣   𝑒,𝐺   𝑇,𝑒,𝑣   𝑒,𝑉,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑒)   𝐺(𝑣)

Proof of Theorem mrsubfval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.c . . . . . 6 𝐶 = (mCN‘𝑇)
2 mrsubffval.v . . . . . 6 𝑉 = (mVR‘𝑇)
3 mrsubffval.r . . . . . 6 𝑅 = (mREx‘𝑇)
4 mrsubffval.s . . . . . 6 𝑆 = (mRSubst‘𝑇)
5 mrsubffval.g . . . . . 6 𝐺 = (freeMnd‘(𝐶𝑉))
61, 2, 3, 4, 5mrsubffval 30460 . . . . 5 (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
76adantr 479 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
8 dmeq 5229 . . . . . . . . . . 11 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
9 fdm 5946 . . . . . . . . . . . 12 (𝐹:𝐴𝑅 → dom 𝐹 = 𝐴)
109ad2antrl 759 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → dom 𝐹 = 𝐴)
118, 10sylan9eqr 2661 . . . . . . . . . 10 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → dom 𝑓 = 𝐴)
1211eleq2d 2668 . . . . . . . . 9 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑣 ∈ dom 𝑓𝑣𝐴))
13 simpr 475 . . . . . . . . . 10 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
1413fveq1d 6086 . . . . . . . . 9 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑓𝑣) = (𝐹𝑣))
1512, 14ifbieq1d 4054 . . . . . . . 8 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) = if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))
1615mpteq2dv 4663 . . . . . . 7 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)))
1716coeq1d 5189 . . . . . 6 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))
1817oveq2d 6539 . . . . 5 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))
1918mpteq2dv 4663 . . . 4 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
20 fvex 6094 . . . . . . 7 (mREx‘𝑇) ∈ V
213, 20eqeltri 2679 . . . . . 6 𝑅 ∈ V
2221a1i 11 . . . . 5 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝑅 ∈ V)
23 fvex 6094 . . . . . . 7 (mVR‘𝑇) ∈ V
242, 23eqeltri 2679 . . . . . 6 𝑉 ∈ V
2524a1i 11 . . . . 5 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝑉 ∈ V)
26 simprl 789 . . . . 5 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹:𝐴𝑅)
27 simprr 791 . . . . 5 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐴𝑉)
28 elpm2r 7734 . . . . 5 (((𝑅 ∈ V ∧ 𝑉 ∈ V) ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹 ∈ (𝑅pm 𝑉))
2922, 25, 26, 27, 28syl22anc 1318 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹 ∈ (𝑅pm 𝑉))
3021mptex 6364 . . . . 5 (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ V
3130a1i 11 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ V)
327, 19, 29, 31fvmptd 6178 . . 3 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
3332ex 448 . 2 (𝑇 ∈ V → ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
34 0fv 6118 . . . 4 (∅‘𝐹) = ∅
35 fvprc 6078 . . . . . 6 𝑇 ∈ V → (mRSubst‘𝑇) = ∅)
364, 35syl5eq 2651 . . . . 5 𝑇 ∈ V → 𝑆 = ∅)
3736fveq1d 6086 . . . 4 𝑇 ∈ V → (𝑆𝐹) = (∅‘𝐹))
38 fvprc 6078 . . . . . . 7 𝑇 ∈ V → (mREx‘𝑇) = ∅)
393, 38syl5eq 2651 . . . . . 6 𝑇 ∈ V → 𝑅 = ∅)
4039mpteq1d 4656 . . . . 5 𝑇 ∈ V → (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒 ∈ ∅ ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
41 mpt0 5916 . . . . 5 (𝑒 ∈ ∅ ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = ∅
4240, 41syl6eq 2655 . . . 4 𝑇 ∈ V → (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = ∅)
4334, 37, 423eqtr4a 2665 . . 3 𝑇 ∈ V → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
4443a1d 25 . 2 𝑇 ∈ V → ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
4533, 44pm2.61i 174 1 ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wcel 1975  Vcvv 3168  cun 3533  wss 3535  c0 3869  ifcif 4031  cmpt 4633  dom cdm 5024  ccom 5028  wf 5782  cfv 5786  (class class class)co 6523  pm cpm 7718  ⟨“cs1 13091   Σg cgsu 15866  freeMndcfrmd 17149  mCNcmcn 30413  mVRcmvar 30414  mRExcmrex 30419  mRSubstcmrsub 30423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-pm 7720  df-mrsub 30443
This theorem is referenced by:  mrsubval  30462  mrsubrn  30466  elmrsubrn  30473
  Copyright terms: Public domain W3C validator