Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrrcl Structured version   Visualization version   GIF version

Theorem msrrcl 32783
Description: If 𝑋 and 𝑌 have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
msrf.r 𝑅 = (mStRed‘𝑇)
Assertion
Ref Expression
msrrcl ((𝑅𝑋) = (𝑅𝑌) → (𝑋𝑃𝑌𝑃))

Proof of Theorem msrrcl
StepHypRef Expression
1 mpstssv.p . . . . 5 𝑃 = (mPreSt‘𝑇)
2 msrf.r . . . . 5 𝑅 = (mStRed‘𝑇)
31, 2msrf 32782 . . . 4 𝑅:𝑃𝑃
43ffvelrni 6843 . . 3 (𝑋𝑃 → (𝑅𝑋) ∈ 𝑃)
54a1i 11 . 2 ((𝑅𝑋) = (𝑅𝑌) → (𝑋𝑃 → (𝑅𝑋) ∈ 𝑃))
63ffvelrni 6843 . . 3 (𝑌𝑃 → (𝑅𝑌) ∈ 𝑃)
7 eleq1 2898 . . 3 ((𝑅𝑋) = (𝑅𝑌) → ((𝑅𝑋) ∈ 𝑃 ↔ (𝑅𝑌) ∈ 𝑃))
86, 7syl5ibr 248 . 2 ((𝑅𝑋) = (𝑅𝑌) → (𝑌𝑃 → (𝑅𝑋) ∈ 𝑃))
93fdmi 6517 . . . . . 6 dom 𝑅 = 𝑃
10 0nelxp 5582 . . . . . . 7 ¬ ∅ ∈ ((V × V) × V)
111mpstssv 32779 . . . . . . . 8 𝑃 ⊆ ((V × V) × V)
1211sseli 3961 . . . . . . 7 (∅ ∈ 𝑃 → ∅ ∈ ((V × V) × V))
1310, 12mto 199 . . . . . 6 ¬ ∅ ∈ 𝑃
149, 13ndmfvrcl 6694 . . . . 5 ((𝑅𝑋) ∈ 𝑃𝑋𝑃)
1514adantl 484 . . . 4 (((𝑅𝑋) = (𝑅𝑌) ∧ (𝑅𝑋) ∈ 𝑃) → 𝑋𝑃)
167biimpa 479 . . . . 5 (((𝑅𝑋) = (𝑅𝑌) ∧ (𝑅𝑋) ∈ 𝑃) → (𝑅𝑌) ∈ 𝑃)
179, 13ndmfvrcl 6694 . . . . 5 ((𝑅𝑌) ∈ 𝑃𝑌𝑃)
1816, 17syl 17 . . . 4 (((𝑅𝑋) = (𝑅𝑌) ∧ (𝑅𝑋) ∈ 𝑃) → 𝑌𝑃)
1915, 182thd 267 . . 3 (((𝑅𝑋) = (𝑅𝑌) ∧ (𝑅𝑋) ∈ 𝑃) → (𝑋𝑃𝑌𝑃))
2019ex 415 . 2 ((𝑅𝑋) = (𝑅𝑌) → ((𝑅𝑋) ∈ 𝑃 → (𝑋𝑃𝑌𝑃)))
215, 8, 20pm5.21ndd 383 1 ((𝑅𝑋) = (𝑅𝑌) → (𝑋𝑃𝑌𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  Vcvv 3493  c0 4289   × cxp 5546  cfv 6348  mPreStcmpst 32713  mStRedcmsr 32714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-ot 4568  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-1st 7681  df-2nd 7682  df-mpst 32733  df-msr 32734
This theorem is referenced by:  elmthm  32816
  Copyright terms: Public domain W3C validator