Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubco Structured version   Visualization version   GIF version

Theorem msubco 31133
Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
msubco.s 𝑆 = (mSubst‘𝑇)
Assertion
Ref Expression
msubco ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)

Proof of Theorem msubco
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . . 5 (mEx‘𝑇) = (mEx‘𝑇)
2 eqid 2621 . . . . 5 (mRSubst‘𝑇) = (mRSubst‘𝑇)
3 msubco.s . . . . 5 𝑆 = (mSubst‘𝑇)
41, 2, 3elmsubrn 31130 . . . 4 ran 𝑆 = ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
54eleq2i 2690 . . 3 (𝐹 ∈ ran 𝑆𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩)))
6 eqid 2621 . . . 4 (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩)) = (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
7 fvex 6158 . . . . 5 (mEx‘𝑇) ∈ V
87mptex 6440 . . . 4 (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∈ V
96, 8elrnmpti 5336 . . 3 (𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩)) ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
105, 9bitri 264 . 2 (𝐹 ∈ ran 𝑆 ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
111, 2, 3elmsubrn 31130 . . . 4 ran 𝑆 = ran (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
1211eleq2i 2690 . . 3 (𝐺 ∈ ran 𝑆𝐺 ∈ ran (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
13 eqid 2621 . . . 4 (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) = (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
147mptex 6440 . . . 4 (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩) ∈ V
1513, 14elrnmpti 5336 . . 3 (𝐺 ∈ ran (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ↔ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
1612, 15bitri 264 . 2 (𝐺 ∈ ran 𝑆 ↔ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
17 reeanv 3097 . . 3 (∃𝑓 ∈ ran (mRSubst‘𝑇)∃𝑔 ∈ ran (mRSubst‘𝑇)(𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ↔ (∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
18 simpr 477 . . . . . . . . . . . 12 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → 𝑦 ∈ (mEx‘𝑇))
19 eqid 2621 . . . . . . . . . . . . 13 (mTC‘𝑇) = (mTC‘𝑇)
20 eqid 2621 . . . . . . . . . . . . 13 (mREx‘𝑇) = (mREx‘𝑇)
2119, 1, 20mexval 31104 . . . . . . . . . . . 12 (mEx‘𝑇) = ((mTC‘𝑇) × (mREx‘𝑇))
2218, 21syl6eleq 2708 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → 𝑦 ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
23 xp1st 7143 . . . . . . . . . . 11 (𝑦 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (1st𝑦) ∈ (mTC‘𝑇))
2422, 23syl 17 . . . . . . . . . 10 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → (1st𝑦) ∈ (mTC‘𝑇))
252, 20mrsubf 31119 . . . . . . . . . . . 12 (𝑔 ∈ ran (mRSubst‘𝑇) → 𝑔:(mREx‘𝑇)⟶(mREx‘𝑇))
2625ad2antlr 762 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → 𝑔:(mREx‘𝑇)⟶(mREx‘𝑇))
27 xp2nd 7144 . . . . . . . . . . . 12 (𝑦 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (2nd𝑦) ∈ (mREx‘𝑇))
2822, 27syl 17 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → (2nd𝑦) ∈ (mREx‘𝑇))
2926, 28ffvelrnd 6316 . . . . . . . . . 10 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → (𝑔‘(2nd𝑦)) ∈ (mREx‘𝑇))
30 opelxpi 5108 . . . . . . . . . 10 (((1st𝑦) ∈ (mTC‘𝑇) ∧ (𝑔‘(2nd𝑦)) ∈ (mREx‘𝑇)) → ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3124, 29, 30syl2anc 692 . . . . . . . . 9 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3231, 21syl6eleqr 2709 . . . . . . . 8 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ ∈ (mEx‘𝑇))
33 eqidd 2622 . . . . . . . 8 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
34 eqidd 2622 . . . . . . . 8 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
35 fvex 6158 . . . . . . . . . 10 (1st𝑦) ∈ V
36 fvex 6158 . . . . . . . . . 10 (𝑔‘(2nd𝑦)) ∈ V
3735, 36op1std 7123 . . . . . . . . 9 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → (1st𝑥) = (1st𝑦))
3835, 36op2ndd 7124 . . . . . . . . . 10 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → (2nd𝑥) = (𝑔‘(2nd𝑦)))
3938fveq2d 6152 . . . . . . . . 9 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → (𝑓‘(2nd𝑥)) = (𝑓‘(𝑔‘(2nd𝑦))))
4037, 39opeq12d 4378 . . . . . . . 8 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩ = ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩)
4132, 33, 34, 40fmptco 6351 . . . . . . 7 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩))
42 fvco3 6232 . . . . . . . . . 10 ((𝑔:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ (2nd𝑦) ∈ (mREx‘𝑇)) → ((𝑓𝑔)‘(2nd𝑦)) = (𝑓‘(𝑔‘(2nd𝑦))))
4326, 28, 42syl2anc 692 . . . . . . . . 9 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ((𝑓𝑔)‘(2nd𝑦)) = (𝑓‘(𝑔‘(2nd𝑦))))
4443opeq2d 4377 . . . . . . . 8 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩ = ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩)
4544mpteq2dva 4704 . . . . . . 7 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩))
4641, 45eqtr4d 2658 . . . . . 6 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩))
472mrsubco 31123 . . . . . . . 8 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑓𝑔) ∈ ran (mRSubst‘𝑇))
487mptex 6440 . . . . . . . 8 (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ V
49 eqid 2621 . . . . . . . . 9 ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩)) = ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩))
50 fveq1 6147 . . . . . . . . . . 11 ( = (𝑓𝑔) → (‘(2nd𝑦)) = ((𝑓𝑔)‘(2nd𝑦)))
5150opeq2d 4377 . . . . . . . . . 10 ( = (𝑓𝑔) → ⟨(1st𝑦), (‘(2nd𝑦))⟩ = ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩)
5251mpteq2dv 4705 . . . . . . . . 9 ( = (𝑓𝑔) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩))
5349, 52elrnmpt1s 5333 . . . . . . . 8 (((𝑓𝑔) ∈ ran (mRSubst‘𝑇) ∧ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ V) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ ran ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩)))
5447, 48, 53sylancl 693 . . . . . . 7 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ ran ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩)))
551, 2, 3elmsubrn 31130 . . . . . . 7 ran 𝑆 = ran ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩))
5654, 55syl6eleqr 2709 . . . . . 6 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ ran 𝑆)
5746, 56eqeltrd 2698 . . . . 5 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ∈ ran 𝑆)
58 coeq1 5239 . . . . . . 7 (𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) → (𝐹𝐺) = ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ 𝐺))
59 coeq2 5240 . . . . . . 7 (𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ 𝐺) = ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
6058, 59sylan9eq 2675 . . . . . 6 ((𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) = ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
6160eleq1d 2683 . . . . 5 ((𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → ((𝐹𝐺) ∈ ran 𝑆 ↔ ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ∈ ran 𝑆))
6257, 61syl5ibrcom 237 . . . 4 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) ∈ ran 𝑆))
6362rexlimivv 3029 . . 3 (∃𝑓 ∈ ran (mRSubst‘𝑇)∃𝑔 ∈ ran (mRSubst‘𝑇)(𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) ∈ ran 𝑆)
6417, 63sylbir 225 . 2 ((∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) ∈ ran 𝑆)
6510, 16, 64syl2anb 496 1 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wrex 2908  Vcvv 3186  cop 4154  cmpt 4673   × cxp 5072  ran crn 5075  ccom 5078  wf 5843  cfv 5847  1st c1st 7111  2nd c2nd 7112  mTCcmtc 31066  mRExcmrex 31068  mExcmex 31069  mRSubstcmrsub 31072  mSubstcmsub 31073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-word 13238  df-lsw 13239  df-concat 13240  df-s1 13241  df-substr 13242  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-gsum 16024  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-frmd 17307  df-vrmd 17308  df-mrex 31088  df-mex 31089  df-mrsub 31092  df-msub 31093
This theorem is referenced by:  mclsppslem  31185
  Copyright terms: Public domain W3C validator