MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul01 Structured version   Visualization version   GIF version

Theorem mul01 10067
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul01 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)

Proof of Theorem mul01
StepHypRef Expression
1 0cn 9889 . . 3 0 ∈ ℂ
2 mulcom 9879 . . 3 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 · 0) = (0 · 𝐴))
31, 2mpan2 702 . 2 (𝐴 ∈ ℂ → (𝐴 · 0) = (0 · 𝐴))
4 mul02 10066 . 2 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
53, 4eqtrd 2643 1 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  (class class class)co 6527  cc 9791  0cc0 9793   · cmul 9798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-ltxr 9936
This theorem is referenced by:  addid1  10068  cnegex  10069  mul01i  10078  mul01d  10087  bernneq  12810  bcval5  12925  geo2lim  14394  efexp  14619  gcdmultiplez  15057  plymul0or  23785  fta1lem  23811  1cxp  24163  cxpmul2  24180  efrlim  24441  lgsne0  24805  vcz  26619  blocnilem  26877  hvmul0  27099  ocsh  27360  0lnfn  28062  nlelshi  28137  0even  41743  2zrngamgm  41751
  Copyright terms: Public domain W3C validator