MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02lem1 Structured version   Visualization version   GIF version

Theorem mul02lem1 10325
Description: Lemma for mul02 10327. If any real does not produce 0 when multiplied by 0, then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem1 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵))

Proof of Theorem mul02lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 10153 . . . . 5 0 ∈ ℝ
2 remulcl 10134 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 · 𝐴) ∈ ℝ)
31, 2mpan 708 . . . 4 (𝐴 ∈ ℝ → (0 · 𝐴) ∈ ℝ)
4 ax-rrecex 10121 . . . 4 (((0 · 𝐴) ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
53, 4sylan 489 . . 3 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
65adantr 472 . 2 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
7 00id 10324 . . . . 5 (0 + 0) = 0
87oveq2i 6776 . . . 4 (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = (((𝑦 · 𝐴) · 𝐵) · 0)
98eqcomi 2733 . . 3 (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 𝐵) · (0 + 0))
10 simprl 811 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝑦 ∈ ℝ)
1110recnd 10181 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝑦 ∈ ℂ)
12 simplll 815 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐴 ∈ ℝ)
1312recnd 10181 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐴 ∈ ℂ)
1411, 13mulcld 10173 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (𝑦 · 𝐴) ∈ ℂ)
15 simplr 809 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐵 ∈ ℂ)
16 0cn 10145 . . . . . 6 0 ∈ ℂ
17 mul32 10316 . . . . . 6 (((𝑦 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
1816, 17mp3an3 1526 . . . . 5 (((𝑦 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
1914, 15, 18syl2anc 696 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
20 mul31 10317 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
2116, 20mp3an3 1526 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
2211, 13, 21syl2anc 696 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
23 simprr 813 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((0 · 𝐴) · 𝑦) = 1)
2422, 23eqtrd 2758 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 0) = 1)
2524oveq1d 6780 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 0) · 𝐵) = (1 · 𝐵))
26 mulid2 10151 . . . . . 6 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
2726ad2antlr 765 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (1 · 𝐵) = 𝐵)
2825, 27eqtrd 2758 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 0) · 𝐵) = 𝐵)
2919, 28eqtrd 2758 . . 3 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · 0) = 𝐵)
3014, 15mulcld 10173 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 𝐵) ∈ ℂ)
31 adddi 10138 . . . . . 6 ((((𝑦 · 𝐴) · 𝐵) ∈ ℂ ∧ 0 ∈ ℂ ∧ 0 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3216, 16, 31mp3an23 1529 . . . . 5 (((𝑦 · 𝐴) · 𝐵) ∈ ℂ → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3330, 32syl 17 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3429, 29oveq12d 6783 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)) = (𝐵 + 𝐵))
3533, 34eqtrd 2758 . . 3 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = (𝐵 + 𝐵))
369, 29, 353eqtr3a 2782 . 2 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐵 = (𝐵 + 𝐵))
376, 36rexlimddv 3137 1 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  wne 2896  wrex 3015  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-po 5139  df-so 5140  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-ov 6768  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-ltxr 10192
This theorem is referenced by:  mul02lem2  10326
  Copyright terms: Public domain W3C validator