MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02lem2 Structured version   Visualization version   GIF version

Theorem mul02lem2 10064
Description: Lemma for mul02 10065. Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem2 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)

Proof of Theorem mul02lem2
StepHypRef Expression
1 ax-1ne0 9861 . 2 1 ≠ 0
2 ax-1cn 9850 . . . . . . . . 9 1 ∈ ℂ
3 mul02lem1 10063 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 1 ∈ ℂ) → 1 = (1 + 1))
42, 3mpan2 702 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = (1 + 1))
54eqcomd 2615 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (1 + 1) = 1)
65oveq2d 6543 . . . . . 6 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ((i · i) + (1 + 1)) = ((i · i) + 1))
7 ax-icn 9851 . . . . . . . . 9 i ∈ ℂ
87, 7mulcli 9901 . . . . . . . 8 (i · i) ∈ ℂ
98, 2, 2addassi 9904 . . . . . . 7 (((i · i) + 1) + 1) = ((i · i) + (1 + 1))
10 ax-i2m1 9860 . . . . . . . 8 ((i · i) + 1) = 0
1110oveq1i 6537 . . . . . . 7 (((i · i) + 1) + 1) = (0 + 1)
129, 11eqtr3i 2633 . . . . . 6 ((i · i) + (1 + 1)) = (0 + 1)
13 00id 10062 . . . . . . 7 (0 + 0) = 0
1410, 13eqtr4i 2634 . . . . . 6 ((i · i) + 1) = (0 + 0)
156, 12, 143eqtr3g 2666 . . . . 5 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (0 + 1) = (0 + 0))
16 1re 9895 . . . . . 6 1 ∈ ℝ
17 0re 9896 . . . . . 6 0 ∈ ℝ
18 readdcan 10061 . . . . . 6 ((1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 1) = (0 + 0) ↔ 1 = 0))
1916, 17, 17, 18mp3an 1415 . . . . 5 ((0 + 1) = (0 + 0) ↔ 1 = 0)
2015, 19sylib 206 . . . 4 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = 0)
2120ex 448 . . 3 (𝐴 ∈ ℝ → ((0 · 𝐴) ≠ 0 → 1 = 0))
2221necon1d 2803 . 2 (𝐴 ∈ ℝ → (1 ≠ 0 → (0 · 𝐴) = 0))
231, 22mpi 20 1 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793  ici 9794   + caddc 9795   · cmul 9797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-ltxr 9935
This theorem is referenced by:  mul02  10065  rexmul  11930  mbfmulc2lem  23137  i1fmulc  23193  itg1mulc  23194  stoweidlem34  38724  ztprmneprm  41913  nn0sumshdiglemA  42206  nn0sumshdiglem1  42208
  Copyright terms: Public domain W3C validator