![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mul13d | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
mul13d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mul13d.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mul13d.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mul13d | ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul13d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mul13d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mul13d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 1, 2, 3 | mul12d 10283 | . 2 ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) |
5 | 2, 1, 3 | mulassd 10101 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐵 · (𝐴 · 𝐶))) |
6 | 2, 1 | mulcld 10098 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐴) ∈ ℂ) |
7 | 6, 3 | mulcomd 10099 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐴) · 𝐶) = (𝐶 · (𝐵 · 𝐴))) |
8 | 4, 5, 7 | 3eqtr2d 2691 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 (class class class)co 6690 ℂcc 9972 · cmul 9979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-mulcl 10036 ax-mulcom 10038 ax-mulass 10040 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-ov 6693 |
This theorem is referenced by: dirkertrigeqlem3 40635 fourierdlem83 40724 |
Copyright terms: Public domain | W3C validator |