![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul2sq | Structured version Visualization version GIF version |
Description: Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.) |
Ref | Expression |
---|---|
2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
Ref | Expression |
---|---|
mul2sq | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sq.1 | . . 3 ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) | |
2 | 1 | 2sqlem1 25187 | . 2 ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
3 | 1 | 2sqlem1 25187 | . 2 ⊢ (𝐵 ∈ 𝑆 ↔ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2)) |
4 | reeanv 3136 | . . 3 ⊢ (∃𝑥 ∈ ℤ[i] ∃𝑦 ∈ ℤ[i] (𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) ↔ (∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2) ∧ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2))) | |
5 | gzmulcl 15689 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (𝑥 · 𝑦) ∈ ℤ[i]) | |
6 | gzcn 15683 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ[i] → 𝑥 ∈ ℂ) | |
7 | gzcn 15683 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℤ[i] → 𝑦 ∈ ℂ) | |
8 | absmul 14078 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) | |
9 | 6, 7, 8 | syl2an 493 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) |
10 | 9 | oveq1d 6705 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ((abs‘(𝑥 · 𝑦))↑2) = (((abs‘𝑥) · (abs‘𝑦))↑2)) |
11 | 6 | abscld 14219 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ[i] → (abs‘𝑥) ∈ ℝ) |
12 | 11 | recnd 10106 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℤ[i] → (abs‘𝑥) ∈ ℂ) |
13 | 7 | abscld 14219 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℤ[i] → (abs‘𝑦) ∈ ℝ) |
14 | 13 | recnd 10106 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℤ[i] → (abs‘𝑦) ∈ ℂ) |
15 | sqmul 12966 | . . . . . . . . 9 ⊢ (((abs‘𝑥) ∈ ℂ ∧ (abs‘𝑦) ∈ ℂ) → (((abs‘𝑥) · (abs‘𝑦))↑2) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2))) | |
16 | 12, 14, 15 | syl2an 493 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥) · (abs‘𝑦))↑2) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2))) |
17 | 10, 16 | eqtr2d 2686 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘(𝑥 · 𝑦))↑2)) |
18 | fveq2 6229 | . . . . . . . . . 10 ⊢ (𝑧 = (𝑥 · 𝑦) → (abs‘𝑧) = (abs‘(𝑥 · 𝑦))) | |
19 | 18 | oveq1d 6705 | . . . . . . . . 9 ⊢ (𝑧 = (𝑥 · 𝑦) → ((abs‘𝑧)↑2) = ((abs‘(𝑥 · 𝑦))↑2)) |
20 | 19 | eqeq2d 2661 | . . . . . . . 8 ⊢ (𝑧 = (𝑥 · 𝑦) → ((((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2) ↔ (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘(𝑥 · 𝑦))↑2))) |
21 | 20 | rspcev 3340 | . . . . . . 7 ⊢ (((𝑥 · 𝑦) ∈ ℤ[i] ∧ (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘(𝑥 · 𝑦))↑2)) → ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2)) |
22 | 5, 17, 21 | syl2anc 694 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2)) |
23 | 1 | 2sqlem1 25187 | . . . . . 6 ⊢ ((((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆 ↔ ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2)) |
24 | 22, 23 | sylibr 224 | . . . . 5 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆) |
25 | oveq12 6699 | . . . . . 6 ⊢ ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2))) | |
26 | 25 | eleq1d 2715 | . . . . 5 ⊢ ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → ((𝐴 · 𝐵) ∈ 𝑆 ↔ (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆)) |
27 | 24, 26 | syl5ibrcom 237 | . . . 4 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆)) |
28 | 27 | rexlimivv 3065 | . . 3 ⊢ (∃𝑥 ∈ ℤ[i] ∃𝑦 ∈ ℤ[i] (𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆) |
29 | 4, 28 | sylbir 225 | . 2 ⊢ ((∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2) ∧ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆) |
30 | 2, 3, 29 | syl2anb 495 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 ↦ cmpt 4762 ran crn 5144 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 · cmul 9979 2c2 11108 ↑cexp 12900 abscabs 14018 ℤ[i]cgz 15680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-gz 15681 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |