MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul4 Structured version   Visualization version   GIF version

Theorem mul4 10417
Description: Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999.)
Assertion
Ref Expression
mul4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))

Proof of Theorem mul4
StepHypRef Expression
1 mul32 10415 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵))
21oveq1d 6829 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 · 𝐵) · 𝐶) · 𝐷) = (((𝐴 · 𝐶) · 𝐵) · 𝐷))
323expa 1112 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐶 ∈ ℂ) → (((𝐴 · 𝐵) · 𝐶) · 𝐷) = (((𝐴 · 𝐶) · 𝐵) · 𝐷))
43adantrr 755 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐵) · 𝐶) · 𝐷) = (((𝐴 · 𝐶) · 𝐵) · 𝐷))
5 mulcl 10232 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
6 mulass 10236 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((𝐴 · 𝐵) · 𝐶) · 𝐷) = ((𝐴 · 𝐵) · (𝐶 · 𝐷)))
763expb 1114 . . 3 (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐵) · 𝐶) · 𝐷) = ((𝐴 · 𝐵) · (𝐶 · 𝐷)))
85, 7sylan 489 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐵) · 𝐶) · 𝐷) = ((𝐴 · 𝐵) · (𝐶 · 𝐷)))
9 mulcl 10232 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
10 mulass 10236 . . . . 5 (((𝐴 · 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((𝐴 · 𝐶) · 𝐵) · 𝐷) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
11103expb 1114 . . . 4 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) · 𝐵) · 𝐷) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
129, 11sylan 489 . . 3 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) · 𝐵) · 𝐷) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
1312an4s 904 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) · 𝐵) · 𝐷) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
144, 8, 133eqtr3d 2802 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  (class class class)co 6814  cc 10146   · cmul 10153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-mulcl 10210  ax-mulcom 10212  ax-mulass 10214
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057  df-ov 6817
This theorem is referenced by:  mul4i  10445  mul4d  10460  recextlem1  10869  divmuldiv  10937  mulexp  13113  demoivreALT  15150  bposlem9  25237
  Copyright terms: Public domain W3C validator