MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulassnq Structured version   Visualization version   GIF version

Theorem mulassnq 9535
Description: Multiplication of positive fractions is associative. (Contributed by NM, 1-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulassnq ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶))

Proof of Theorem mulassnq
StepHypRef Expression
1 mulasspi 9473 . . . . . . 7 (((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)) = ((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶)))
2 mulasspi 9473 . . . . . . 7 (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) = ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))
31, 2opeq12i 4243 . . . . . 6 ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩ = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩
4 elpqn 9501 . . . . . . . . . 10 (𝐴Q𝐴 ∈ (N × N))
543ad2ant1 1074 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
6 elpqn 9501 . . . . . . . . . 10 (𝐵Q𝐵 ∈ (N × N))
763ad2ant2 1075 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
8 mulpipq2 9515 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
95, 7, 8syl2anc 690 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
10 relxp 5043 . . . . . . . . 9 Rel (N × N)
11 elpqn 9501 . . . . . . . . . 10 (𝐶Q𝐶 ∈ (N × N))
12113ad2ant3 1076 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
13 1st2nd 6979 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐶 ∈ (N × N)) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
1410, 12, 13sylancr 693 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
159, 14oveq12d 6443 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩))
16 xp1st 6963 . . . . . . . . . 10 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
175, 16syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (1st𝐴) ∈ N)
18 xp1st 6963 . . . . . . . . . 10 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
197, 18syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (1st𝐵) ∈ N)
20 mulclpi 9469 . . . . . . . . 9 (((1st𝐴) ∈ N ∧ (1st𝐵) ∈ N) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
2117, 19, 20syl2anc 690 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
22 xp2nd 6964 . . . . . . . . . 10 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
235, 22syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐴) ∈ N)
24 xp2nd 6964 . . . . . . . . . 10 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
257, 24syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐵) ∈ N)
26 mulclpi 9469 . . . . . . . . 9 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
2723, 25, 26syl2anc 690 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
28 xp1st 6963 . . . . . . . . 9 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
2912, 28syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
30 xp2nd 6964 . . . . . . . . 9 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
3112, 30syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
32 mulpipq 9516 . . . . . . . 8 (((((1st𝐴) ·N (1st𝐵)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N) ∧ ((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N)) → (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
3321, 27, 29, 31, 32syl22anc 1318 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
3415, 33eqtrd 2548 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
35 1st2nd 6979 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3610, 5, 35sylancr 693 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
37 mulpipq2 9515 . . . . . . . . 9 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
387, 12, 37syl2anc 690 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
3936, 38oveq12d 6443 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 ·pQ 𝐶)) = (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩))
40 mulclpi 9469 . . . . . . . . 9 (((1st𝐵) ∈ N ∧ (1st𝐶) ∈ N) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
4119, 29, 40syl2anc 690 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
42 mulclpi 9469 . . . . . . . . 9 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
4325, 31, 42syl2anc 690 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
44 mulpipq 9516 . . . . . . . 8 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (((1st𝐵) ·N (1st𝐶)) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
4517, 23, 41, 43, 44syl22anc 1318 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
4639, 45eqtrd 2548 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 ·pQ 𝐶)) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
473, 34, 463eqtr4a 2574 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = (𝐴 ·pQ (𝐵 ·pQ 𝐶)))
4847fveq2d 5990 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ([Q]‘((𝐴 ·pQ 𝐵) ·pQ 𝐶)) = ([Q]‘(𝐴 ·pQ (𝐵 ·pQ 𝐶))))
49 mulerpq 9533 . . . 4 (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)) = ([Q]‘((𝐴 ·pQ 𝐵) ·pQ 𝐶))
50 mulerpq 9533 . . . 4 (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))) = ([Q]‘(𝐴 ·pQ (𝐵 ·pQ 𝐶)))
5148, 49, 503eqtr4g 2573 . . 3 ((𝐴Q𝐵Q𝐶Q) → (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)) = (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))))
52 mulpqnq 9517 . . . . 5 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
53523adant3 1073 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
54 nqerid 9509 . . . . . 6 (𝐶Q → ([Q]‘𝐶) = 𝐶)
5554eqcomd 2520 . . . . 5 (𝐶Q𝐶 = ([Q]‘𝐶))
56553ad2ant3 1076 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ([Q]‘𝐶))
5753, 56oveq12d 6443 . . 3 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)))
58 nqerid 9509 . . . . . 6 (𝐴Q → ([Q]‘𝐴) = 𝐴)
5958eqcomd 2520 . . . . 5 (𝐴Q𝐴 = ([Q]‘𝐴))
60593ad2ant1 1074 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ([Q]‘𝐴))
61 mulpqnq 9517 . . . . 5 ((𝐵Q𝐶Q) → (𝐵 ·Q 𝐶) = ([Q]‘(𝐵 ·pQ 𝐶)))
62613adant1 1071 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐵 ·Q 𝐶) = ([Q]‘(𝐵 ·pQ 𝐶)))
6360, 62oveq12d 6443 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 ·Q 𝐶)) = (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))))
6451, 57, 633eqtr4d 2558 . 2 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))
65 mulnqf 9525 . . . 4 ·Q :(Q × Q)⟶Q
6665fdmi 5850 . . 3 dom ·Q = (Q × Q)
67 0nnq 9500 . . 3 ¬ ∅ ∈ Q
6866, 67ndmovass 6595 . 2 (¬ (𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))
6964, 68pm2.61i 174 1 ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶))
Colors of variables: wff setvar class
Syntax hints:  w3a 1030   = wceq 1474  wcel 1938  cop 4034   × cxp 4930  Rel wrel 4937  cfv 5689  (class class class)co 6425  1st c1st 6931  2nd c2nd 6932  Ncnpi 9420   ·N cmi 9422   ·pQ cmpq 9425  Qcnq 9428  [Q]cerq 9430   ·Q cmq 9432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6833  df-1st 6933  df-2nd 6934  df-wrecs 7168  df-recs 7230  df-rdg 7268  df-1o 7322  df-oadd 7326  df-omul 7327  df-er 7504  df-ni 9448  df-mi 9450  df-lti 9451  df-mpq 9485  df-enq 9487  df-nq 9488  df-erq 9489  df-mq 9491  df-1nq 9492
This theorem is referenced by:  recmulnq  9540  halfnq  9552  ltrnq  9555  addclprlem2  9593  mulclprlem  9595  mulasspr  9600  1idpr  9605  prlem934  9609  prlem936  9623  reclem3pr  9625
  Copyright terms: Public domain W3C validator