MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulassnq Structured version   Visualization version   GIF version

Theorem mulassnq 10383
Description: Multiplication of positive fractions is associative. (Contributed by NM, 1-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulassnq ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶))

Proof of Theorem mulassnq
StepHypRef Expression
1 mulasspi 10321 . . . . . . 7 (((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)) = ((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶)))
2 mulasspi 10321 . . . . . . 7 (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) = ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))
31, 2opeq12i 4810 . . . . . 6 ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩ = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩
4 elpqn 10349 . . . . . . . . . 10 (𝐴Q𝐴 ∈ (N × N))
543ad2ant1 1129 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
6 elpqn 10349 . . . . . . . . . 10 (𝐵Q𝐵 ∈ (N × N))
763ad2ant2 1130 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
8 mulpipq2 10363 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
95, 7, 8syl2anc 586 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
10 relxp 5575 . . . . . . . . 9 Rel (N × N)
11 elpqn 10349 . . . . . . . . . 10 (𝐶Q𝐶 ∈ (N × N))
12113ad2ant3 1131 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
13 1st2nd 7740 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐶 ∈ (N × N)) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
1410, 12, 13sylancr 589 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
159, 14oveq12d 7176 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩))
16 xp1st 7723 . . . . . . . . . 10 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
175, 16syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (1st𝐴) ∈ N)
18 xp1st 7723 . . . . . . . . . 10 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
197, 18syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (1st𝐵) ∈ N)
20 mulclpi 10317 . . . . . . . . 9 (((1st𝐴) ∈ N ∧ (1st𝐵) ∈ N) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
2117, 19, 20syl2anc 586 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
22 xp2nd 7724 . . . . . . . . . 10 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
235, 22syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐴) ∈ N)
24 xp2nd 7724 . . . . . . . . . 10 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
257, 24syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐵) ∈ N)
26 mulclpi 10317 . . . . . . . . 9 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
2723, 25, 26syl2anc 586 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
28 xp1st 7723 . . . . . . . . 9 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
2912, 28syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
30 xp2nd 7724 . . . . . . . . 9 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
3112, 30syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
32 mulpipq 10364 . . . . . . . 8 (((((1st𝐴) ·N (1st𝐵)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N) ∧ ((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N)) → (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
3321, 27, 29, 31, 32syl22anc 836 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
3415, 33eqtrd 2858 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
35 1st2nd 7740 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3610, 5, 35sylancr 589 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
37 mulpipq2 10363 . . . . . . . . 9 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
387, 12, 37syl2anc 586 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
3936, 38oveq12d 7176 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 ·pQ 𝐶)) = (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩))
40 mulclpi 10317 . . . . . . . . 9 (((1st𝐵) ∈ N ∧ (1st𝐶) ∈ N) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
4119, 29, 40syl2anc 586 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
42 mulclpi 10317 . . . . . . . . 9 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
4325, 31, 42syl2anc 586 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
44 mulpipq 10364 . . . . . . . 8 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (((1st𝐵) ·N (1st𝐶)) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
4517, 23, 41, 43, 44syl22anc 836 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
4639, 45eqtrd 2858 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 ·pQ 𝐶)) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
473, 34, 463eqtr4a 2884 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = (𝐴 ·pQ (𝐵 ·pQ 𝐶)))
4847fveq2d 6676 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ([Q]‘((𝐴 ·pQ 𝐵) ·pQ 𝐶)) = ([Q]‘(𝐴 ·pQ (𝐵 ·pQ 𝐶))))
49 mulerpq 10381 . . . 4 (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)) = ([Q]‘((𝐴 ·pQ 𝐵) ·pQ 𝐶))
50 mulerpq 10381 . . . 4 (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))) = ([Q]‘(𝐴 ·pQ (𝐵 ·pQ 𝐶)))
5148, 49, 503eqtr4g 2883 . . 3 ((𝐴Q𝐵Q𝐶Q) → (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)) = (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))))
52 mulpqnq 10365 . . . . 5 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
53523adant3 1128 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
54 nqerid 10357 . . . . . 6 (𝐶Q → ([Q]‘𝐶) = 𝐶)
5554eqcomd 2829 . . . . 5 (𝐶Q𝐶 = ([Q]‘𝐶))
56553ad2ant3 1131 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ([Q]‘𝐶))
5753, 56oveq12d 7176 . . 3 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)))
58 nqerid 10357 . . . . . 6 (𝐴Q → ([Q]‘𝐴) = 𝐴)
5958eqcomd 2829 . . . . 5 (𝐴Q𝐴 = ([Q]‘𝐴))
60593ad2ant1 1129 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ([Q]‘𝐴))
61 mulpqnq 10365 . . . . 5 ((𝐵Q𝐶Q) → (𝐵 ·Q 𝐶) = ([Q]‘(𝐵 ·pQ 𝐶)))
62613adant1 1126 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐵 ·Q 𝐶) = ([Q]‘(𝐵 ·pQ 𝐶)))
6360, 62oveq12d 7176 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 ·Q 𝐶)) = (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))))
6451, 57, 633eqtr4d 2868 . 2 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))
65 mulnqf 10373 . . . 4 ·Q :(Q × Q)⟶Q
6665fdmi 6526 . . 3 dom ·Q = (Q × Q)
67 0nnq 10348 . . 3 ¬ ∅ ∈ Q
6866, 67ndmovass 7338 . 2 (¬ (𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))
6964, 68pm2.61i 184 1 ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶))
Colors of variables: wff setvar class
Syntax hints:  w3a 1083   = wceq 1537  wcel 2114  cop 4575   × cxp 5555  Rel wrel 5562  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  Ncnpi 10268   ·N cmi 10270   ·pQ cmpq 10273  Qcnq 10276  [Q]cerq 10278   ·Q cmq 10280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-ni 10296  df-mi 10298  df-lti 10299  df-mpq 10333  df-enq 10335  df-nq 10336  df-erq 10337  df-mq 10339  df-1nq 10340
This theorem is referenced by:  recmulnq  10388  halfnq  10400  ltrnq  10403  addclprlem2  10441  mulclprlem  10443  mulasspr  10448  1idpr  10453  prlem934  10457  prlem936  10471  reclem3pr  10473
  Copyright terms: Public domain W3C validator