Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulc1cncfg Structured version   Visualization version   GIF version

Theorem mulc1cncfg 41868
Description: A version of mulc1cncf 23512 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
mulc1cncfg.1 𝑥𝐹
mulc1cncfg.2 𝑥𝜑
mulc1cncfg.3 (𝜑𝐹 ∈ (𝐴cn→ℂ))
mulc1cncfg.4 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
mulc1cncfg (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem mulc1cncfg
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mulc1cncfg.4 . . . . . 6 (𝜑𝐵 ∈ ℂ)
2 eqid 2821 . . . . . . 7 (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))
32mulc1cncf 23512 . . . . . 6 (𝐵 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ))
41, 3syl 17 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ))
5 cncff 23500 . . . . 5 ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ)
64, 5syl 17 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ)
7 mulc1cncfg.3 . . . . 5 (𝜑𝐹 ∈ (𝐴cn→ℂ))
8 cncff 23500 . . . . 5 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹:𝐴⟶ℂ)
97, 8syl 17 . . . 4 (𝜑𝐹:𝐴⟶ℂ)
10 fcompt 6894 . . . 4 (((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))))
116, 9, 10syl2anc 586 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))))
129ffvelrnda 6850 . . . . . 6 ((𝜑𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
131adantr 483 . . . . . . 7 ((𝜑𝑡𝐴) → 𝐵 ∈ ℂ)
1413, 12mulcld 10660 . . . . . 6 ((𝜑𝑡𝐴) → (𝐵 · (𝐹𝑡)) ∈ ℂ)
15 mulc1cncfg.1 . . . . . . . 8 𝑥𝐹
16 nfcv 2977 . . . . . . . 8 𝑥𝑡
1715, 16nffv 6679 . . . . . . 7 𝑥(𝐹𝑡)
18 nfcv 2977 . . . . . . . 8 𝑥𝐵
19 nfcv 2977 . . . . . . . 8 𝑥 ·
2018, 19, 17nfov 7185 . . . . . . 7 𝑥(𝐵 · (𝐹𝑡))
21 oveq2 7163 . . . . . . 7 (𝑥 = (𝐹𝑡) → (𝐵 · 𝑥) = (𝐵 · (𝐹𝑡)))
2217, 20, 21, 2fvmptf 6788 . . . . . 6 (((𝐹𝑡) ∈ ℂ ∧ (𝐵 · (𝐹𝑡)) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡)) = (𝐵 · (𝐹𝑡)))
2312, 14, 22syl2anc 586 . . . . 5 ((𝜑𝑡𝐴) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡)) = (𝐵 · (𝐹𝑡)))
2423mpteq2dva 5160 . . . 4 (𝜑 → (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))) = (𝑡𝐴 ↦ (𝐵 · (𝐹𝑡))))
25 nfcv 2977 . . . . . 6 𝑡𝐵
26 nfcv 2977 . . . . . 6 𝑡 ·
27 nfcv 2977 . . . . . 6 𝑡(𝐹𝑥)
2825, 26, 27nfov 7185 . . . . 5 𝑡(𝐵 · (𝐹𝑥))
29 fveq2 6669 . . . . . 6 (𝑡 = 𝑥 → (𝐹𝑡) = (𝐹𝑥))
3029oveq2d 7171 . . . . 5 (𝑡 = 𝑥 → (𝐵 · (𝐹𝑡)) = (𝐵 · (𝐹𝑥)))
3120, 28, 30cbvmpt 5166 . . . 4 (𝑡𝐴 ↦ (𝐵 · (𝐹𝑡))) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥)))
3224, 31syl6eq 2872 . . 3 (𝜑 → (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))))
3311, 32eqtrd 2856 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))))
347, 4cncfco 23514 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) ∈ (𝐴cn→ℂ))
3533, 34eqeltrrd 2914 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wnf 1780  wcel 2110  wnfc 2961  cmpt 5145  ccom 5558  wf 6350  cfv 6354  (class class class)co 7155  cc 10534   · cmul 10541  cnccncf 23483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-cncf 23485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator