Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclnq Structured version   Visualization version   GIF version

Theorem mulclnq 9713
 Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulclnq ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)

Proof of Theorem mulclnq
StepHypRef Expression
1 mulpqnq 9707 . 2 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
2 elpqn 9691 . . . 4 (𝐴Q𝐴 ∈ (N × N))
3 elpqn 9691 . . . 4 (𝐵Q𝐵 ∈ (N × N))
4 mulpqf 9712 . . . . 5 ·pQ :((N × N) × (N × N))⟶(N × N)
54fovcl 6718 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N × N))
62, 3, 5syl2an 494 . . 3 ((𝐴Q𝐵Q) → (𝐴 ·pQ 𝐵) ∈ (N × N))
7 nqercl 9697 . . 3 ((𝐴 ·pQ 𝐵) ∈ (N × N) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q)
86, 7syl 17 . 2 ((𝐴Q𝐵Q) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q)
91, 8eqeltrd 2698 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∈ wcel 1987   × cxp 5072  ‘cfv 5847  (class class class)co 6604  Ncnpi 9610   ·pQ cmpq 9615  Qcnq 9618  [Q]cerq 9620   ·Q cmq 9622 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-omul 7510  df-er 7687  df-ni 9638  df-mi 9640  df-lti 9641  df-mpq 9675  df-enq 9677  df-nq 9678  df-erq 9679  df-mq 9681  df-1nq 9682 This theorem is referenced by:  ltrnq  9745  mpv  9777  dmmp  9779  mulclprlem  9785  mulclpr  9786  mulasspr  9790  distrlem1pr  9791  distrlem4pr  9792  distrlem5pr  9793  1idpr  9795  prlem934  9799  prlem936  9813  reclem3pr  9815  reclem4pr  9816
 Copyright terms: Public domain W3C validator