MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcn2 Structured version   Visualization version   GIF version

Theorem mulcn2 14120
Description: Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
mulcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem mulcn2
StepHypRef Expression
1 rphalfcl 11690 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+)
213ad2ant1 1074 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 / 2) ∈ ℝ+)
3 abscl 13812 . . . . . 6 (𝐶 ∈ ℂ → (abs‘𝐶) ∈ ℝ)
433ad2ant3 1076 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘𝐶) ∈ ℝ)
5 abscl 13812 . . . . . . . . . 10 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
653ad2ant2 1075 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘𝐵) ∈ ℝ)
7 1re 9895 . . . . . . . . 9 1 ∈ ℝ
8 readdcl 9875 . . . . . . . . 9 (((abs‘𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐵) + 1) ∈ ℝ)
96, 7, 8sylancl 692 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐵) + 1) ∈ ℝ)
10 absge0 13821 . . . . . . . . . 10 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
11 0lt1 10399 . . . . . . . . . . 11 0 < 1
12 addgegt0 10364 . . . . . . . . . . . 12 ((((abs‘𝐵) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (abs‘𝐵) ∧ 0 < 1)) → 0 < ((abs‘𝐵) + 1))
1312an4s 864 . . . . . . . . . . 11 ((((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) ∧ (1 ∈ ℝ ∧ 0 < 1)) → 0 < ((abs‘𝐵) + 1))
147, 11, 13mpanr12 716 . . . . . . . . . 10 (((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) → 0 < ((abs‘𝐵) + 1))
155, 10, 14syl2anc 690 . . . . . . . . 9 (𝐵 ∈ ℂ → 0 < ((abs‘𝐵) + 1))
16153ad2ant2 1075 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 < ((abs‘𝐵) + 1))
179, 16elrpd 11701 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐵) + 1) ∈ ℝ+)
182, 17rpdivcld 11721 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+)
1918rpred 11704 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ)
204, 19readdcld 9925 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ)
21 absge0 13821 . . . . . 6 (𝐶 ∈ ℂ → 0 ≤ (abs‘𝐶))
22213ad2ant3 1076 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 ≤ (abs‘𝐶))
23 elrp 11666 . . . . . 6 (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+ ↔ (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
24 addgegt0 10364 . . . . . . 7 ((((abs‘𝐶) ∈ ℝ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ) ∧ (0 ≤ (abs‘𝐶) ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2524an4s 864 . . . . . 6 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)) ∧ (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2623, 25sylan2b 490 . . . . 5 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)) ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
274, 22, 18, 26syl21anc 1316 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2820, 27elrpd 11701 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ+)
292, 28rpdivcld 11721 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ+)
30 simprl 789 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
31 simpl2 1057 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐵 ∈ ℂ)
3230, 31subcld 10243 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝐵) ∈ ℂ)
3332abscld 13969 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑢𝐵)) ∈ ℝ)
342adantr 479 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐴 / 2) ∈ ℝ+)
3534rpred 11704 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐴 / 2) ∈ ℝ)
3628adantr 479 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ+)
3733, 35, 36ltmuldivd 11751 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) ↔ (abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
38 simprr 791 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
39 simpl3 1058 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐶 ∈ ℂ)
4038, 39abs2difd 13990 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)))
4138abscld 13969 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝑣) ∈ ℝ)
424adantr 479 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐶) ∈ ℝ)
4341, 42resubcld 10309 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) − (abs‘𝐶)) ∈ ℝ)
4438, 39subcld 10243 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑣𝐶) ∈ ℂ)
4544abscld 13969 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑣𝐶)) ∈ ℝ)
4619adantr 479 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ)
47 lelttr 9979 . . . . . . . . . . . . . 14 ((((abs‘𝑣) − (abs‘𝐶)) ∈ ℝ ∧ (abs‘(𝑣𝐶)) ∈ ℝ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ) → ((((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
4843, 45, 46, 47syl3anc 1317 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
4940, 48mpand 706 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
5041, 42, 46ltsubadd2d 10474 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) ↔ (abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5149, 50sylibd 227 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5220adantr 479 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ)
53 ltle 9977 . . . . . . . . . . . 12 (((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ) → ((abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5441, 52, 53syl2anc 690 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5551, 54syld 45 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5632absge0d 13977 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 0 ≤ (abs‘(𝑢𝐵)))
57 lemul2a 10727 . . . . . . . . . . . 12 ((((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑢𝐵)))) ∧ (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5857ex 448 . . . . . . . . . . 11 (((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑢𝐵)))) → ((abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
5941, 52, 33, 56, 58syl112anc 1321 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
6033, 41remulcld 9926 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ∈ ℝ)
6133, 52remulcld 9926 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ)
62 lelttr 9979 . . . . . . . . . . . 12 ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ ∧ (𝐴 / 2) ∈ ℝ) → ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6360, 61, 35, 62syl3anc 1317 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6463expd 450 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6555, 59, 643syld 57 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6665com23 83 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6737, 66sylbird 248 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6867impd 445 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6932, 38absmuld 13987 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢𝐵) · 𝑣)) = ((abs‘(𝑢𝐵)) · (abs‘𝑣)))
7030, 31, 38subdird 10337 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑢𝐵) · 𝑣) = ((𝑢 · 𝑣) − (𝐵 · 𝑣)))
7170fveq2d 6092 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢𝐵) · 𝑣)) = (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))))
7269, 71eqtr3d 2645 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) = (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))))
7372breq1d 4587 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2) ↔ (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2)))
7468, 73sylibd 227 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2)))
7517adantr 479 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) + 1) ∈ ℝ+)
7645, 35, 75ltmuldiv2d 11752 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2) ↔ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
7731, 38, 39subdid 10336 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · (𝑣𝐶)) = ((𝐵 · 𝑣) − (𝐵 · 𝐶)))
7877fveq2d 6092 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝐵 · (𝑣𝐶))) = (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))))
7931, 44absmuld 13987 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝐵 · (𝑣𝐶))) = ((abs‘𝐵) · (abs‘(𝑣𝐶))))
8078, 79eqtr3d 2645 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) = ((abs‘𝐵) · (abs‘(𝑣𝐶))))
8131abscld 13969 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐵) ∈ ℝ)
8281lep1d 10804 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐵) ≤ ((abs‘𝐵) + 1))
839adantr 479 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) + 1) ∈ ℝ)
84 abscl 13812 . . . . . . . . . . . . 13 ((𝑣𝐶) ∈ ℂ → (abs‘(𝑣𝐶)) ∈ ℝ)
85 absge0 13821 . . . . . . . . . . . . 13 ((𝑣𝐶) ∈ ℂ → 0 ≤ (abs‘(𝑣𝐶)))
8684, 85jca 552 . . . . . . . . . . . 12 ((𝑣𝐶) ∈ ℂ → ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶))))
87 lemul1a 10726 . . . . . . . . . . . . 13 ((((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶)))) ∧ (abs‘𝐵) ≤ ((abs‘𝐵) + 1)) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
8887ex 448 . . . . . . . . . . . 12 (((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶)))) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
8986, 88syl3an3 1352 . . . . . . . . . . 11 (((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ (𝑣𝐶) ∈ ℂ) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
9081, 83, 44, 89syl3anc 1317 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
9182, 90mpd 15 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
9280, 91eqbrtrd 4599 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
9331, 38mulcld 9916 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · 𝑣) ∈ ℂ)
9431, 39mulcld 9916 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
9593, 94subcld 10243 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐵 · 𝑣) − (𝐵 · 𝐶)) ∈ ℂ)
9695abscld 13969 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ∈ ℝ)
9783, 45remulcld 9926 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∈ ℝ)
98 lelttr 9979 . . . . . . . . 9 (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ∈ ℝ ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∈ ℝ ∧ (𝐴 / 2) ∈ ℝ) → (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
9996, 97, 35, 98syl3anc 1317 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10092, 99mpand 706 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10176, 100sylbird 248 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
102101adantld 481 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10374, 102jcad 553 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2))))
104 mulcl 9876 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
105104adantl 480 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ)
106 simpl1 1056 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ+)
107106rpred 11704 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ)
108 abs3lem 13872 . . . . 5 ((((𝑢 · 𝑣) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) ∧ ((𝐵 · 𝑣) ∈ ℂ ∧ 𝐴 ∈ ℝ)) → (((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
109105, 94, 93, 107, 108syl22anc 1318 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
110103, 109syld 45 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
111110ralrimivva 2953 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
112 breq2 4581 . . . . . 6 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑢𝐵)) < 𝑦 ↔ (abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
113112anbi1d 736 . . . . 5 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧)))
114113imbi1d 329 . . . 4 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
1151142ralbidv 2971 . . 3 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
116 breq2 4581 . . . . . 6 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑣𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
117116anbi2d 735 . . . . 5 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
118117imbi1d 329 . . . 4 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
1191182ralbidv 2971 . . 3 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
120115, 119rspc2ev 3294 . 2 ((((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ+ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
12129, 18, 111, 120syl3anc 1317 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  wrex 2896   class class class wbr 4577  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  2c2 10917  +crp 11664  abscabs 13768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770
This theorem is referenced by:  climmul  14157  rlimmul  14169  mulcn  22409  mulc1cncf  22447  mullimc  38487  mullimcf  38494
  Copyright terms: Public domain W3C validator