MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcnsr Structured version   Visualization version   GIF version

Theorem mulcnsr 10141
Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcnsr (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)

Proof of Theorem mulcnsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5073 . 2 ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ V
2 oveq1 6812 . . . . 5 (𝑤 = 𝐴 → (𝑤 ·R 𝑢) = (𝐴 ·R 𝑢))
3 oveq1 6812 . . . . . 6 (𝑣 = 𝐵 → (𝑣 ·R 𝑓) = (𝐵 ·R 𝑓))
43oveq2d 6821 . . . . 5 (𝑣 = 𝐵 → (-1R ·R (𝑣 ·R 𝑓)) = (-1R ·R (𝐵 ·R 𝑓)))
52, 4oveqan12d 6824 . . . 4 ((𝑤 = 𝐴𝑣 = 𝐵) → ((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))) = ((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))))
6 oveq1 6812 . . . . 5 (𝑣 = 𝐵 → (𝑣 ·R 𝑢) = (𝐵 ·R 𝑢))
7 oveq1 6812 . . . . 5 (𝑤 = 𝐴 → (𝑤 ·R 𝑓) = (𝐴 ·R 𝑓))
86, 7oveqan12rd 6825 . . . 4 ((𝑤 = 𝐴𝑣 = 𝐵) → ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓)) = ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓)))
95, 8opeq12d 4553 . . 3 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))), ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓))⟩)
10 oveq2 6813 . . . . 5 (𝑢 = 𝐶 → (𝐴 ·R 𝑢) = (𝐴 ·R 𝐶))
11 oveq2 6813 . . . . . 6 (𝑓 = 𝐷 → (𝐵 ·R 𝑓) = (𝐵 ·R 𝐷))
1211oveq2d 6821 . . . . 5 (𝑓 = 𝐷 → (-1R ·R (𝐵 ·R 𝑓)) = (-1R ·R (𝐵 ·R 𝐷)))
1310, 12oveqan12d 6824 . . . 4 ((𝑢 = 𝐶𝑓 = 𝐷) → ((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))) = ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))))
14 oveq2 6813 . . . . 5 (𝑢 = 𝐶 → (𝐵 ·R 𝑢) = (𝐵 ·R 𝐶))
15 oveq2 6813 . . . . 5 (𝑓 = 𝐷 → (𝐴 ·R 𝑓) = (𝐴 ·R 𝐷))
1614, 15oveqan12d 6824 . . . 4 ((𝑢 = 𝐶𝑓 = 𝐷) → ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓)) = ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)))
1713, 16opeq12d 4553 . . 3 ((𝑢 = 𝐶𝑓 = 𝐷) → ⟨((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))), ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
189, 17sylan9eq 2806 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
19 df-mul 10132 . . 3 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
20 df-c 10126 . . . . . . 7 ℂ = (R × R)
2120eleq2i 2823 . . . . . 6 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
2220eleq2i 2823 . . . . . 6 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
2321, 22anbi12i 735 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
2423anbi1i 733 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)))
2524oprabbii 6867 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
2619, 25eqtri 2774 . 2 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
271, 18, 26ov3 6954 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wex 1845  wcel 2131  cop 4319   × cxp 5256  (class class class)co 6805  {coprab 6806  Rcnr 9871  -1Rcm1r 9874   +R cplr 9875   ·R cmr 9876  cc 10118   · cmul 10125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pr 5047
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-br 4797  df-opab 4857  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-iota 6004  df-fun 6043  df-fv 6049  df-ov 6808  df-oprab 6809  df-c 10126  df-mul 10132
This theorem is referenced by:  mulresr  10144  mulcnsrec  10149  axmulf  10151  axi2m1  10164  axcnre  10169
  Copyright terms: Public domain W3C validator