Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcxp Structured version   Visualization version   GIF version

Theorem mulcxp 24412
 Description: Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
mulcxp (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))

Proof of Theorem mulcxp
StepHypRef Expression
1 simp1l 1083 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℝ)
21recnd 10053 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
32mul01d 10220 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐴 · 0) = 0)
43oveq1d 6650 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 0)↑𝑐𝐶) = (0↑𝑐𝐶))
5 simp3 1061 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
62, 5mulcxplem 24411 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (0↑𝑐𝐶) = ((𝐴𝑐𝐶) · (0↑𝑐𝐶)))
74, 6eqtrd 2654 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 0)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (0↑𝑐𝐶)))
8 oveq2 6643 . . . . 5 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
98oveq1d 6650 . . . 4 (𝐵 = 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴 · 0)↑𝑐𝐶))
10 oveq1 6642 . . . . 5 (𝐵 = 0 → (𝐵𝑐𝐶) = (0↑𝑐𝐶))
1110oveq2d 6651 . . . 4 (𝐵 = 0 → ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)) = ((𝐴𝑐𝐶) · (0↑𝑐𝐶)))
129, 11eqeq12d 2635 . . 3 (𝐵 = 0 → (((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)) ↔ ((𝐴 · 0)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (0↑𝑐𝐶))))
137, 12syl5ibrcom 237 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐵 = 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶))))
14 simp2l 1085 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℝ)
1514recnd 10053 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
1615mul02d 10219 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (0 · 𝐵) = 0)
1716oveq1d 6650 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((0 · 𝐵)↑𝑐𝐶) = (0↑𝑐𝐶))
1815, 5mulcxplem 24411 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (0↑𝑐𝐶) = ((𝐵𝑐𝐶) · (0↑𝑐𝐶)))
19 cxpcl 24401 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝑐𝐶) ∈ ℂ)
2015, 5, 19syl2anc 692 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐵𝑐𝐶) ∈ ℂ)
21 0cn 10017 . . . . . . . . 9 0 ∈ ℂ
22 cxpcl 24401 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (0↑𝑐𝐶) ∈ ℂ)
2321, 5, 22sylancr 694 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (0↑𝑐𝐶) ∈ ℂ)
2420, 23mulcomd 10046 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐵𝑐𝐶) · (0↑𝑐𝐶)) = ((0↑𝑐𝐶) · (𝐵𝑐𝐶)))
2518, 24eqtrd 2654 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (0↑𝑐𝐶) = ((0↑𝑐𝐶) · (𝐵𝑐𝐶)))
2617, 25eqtrd 2654 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((0 · 𝐵)↑𝑐𝐶) = ((0↑𝑐𝐶) · (𝐵𝑐𝐶)))
27 oveq1 6642 . . . . . . 7 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
2827oveq1d 6650 . . . . . 6 (𝐴 = 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((0 · 𝐵)↑𝑐𝐶))
29 oveq1 6642 . . . . . . 7 (𝐴 = 0 → (𝐴𝑐𝐶) = (0↑𝑐𝐶))
3029oveq1d 6650 . . . . . 6 (𝐴 = 0 → ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)) = ((0↑𝑐𝐶) · (𝐵𝑐𝐶)))
3128, 30eqeq12d 2635 . . . . 5 (𝐴 = 0 → (((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)) ↔ ((0 · 𝐵)↑𝑐𝐶) = ((0↑𝑐𝐶) · (𝐵𝑐𝐶))))
3226, 31syl5ibrcom 237 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐴 = 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶))))
3332a1dd 50 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐴 = 0 → (𝐵 ≠ 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))))
341adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℝ)
35 simpl1r 1111 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 0 ≤ 𝐴)
36 simprl 793 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
3734, 35, 36ne0gt0d 10159 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 0 < 𝐴)
3834, 37elrpd 11854 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℝ+)
3914adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ)
40 simpl2r 1113 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 0 ≤ 𝐵)
41 simprr 795 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
4239, 40, 41ne0gt0d 10159 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 0 < 𝐵)
4339, 42elrpd 11854 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ+)
4438, 43relogmuld 24352 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵)))
4544oveq2d 6651 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐶 · (log‘(𝐴 · 𝐵))) = (𝐶 · ((log‘𝐴) + (log‘𝐵))))
465adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐶 ∈ ℂ)
472adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℂ)
4847, 36logcld 24298 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (log‘𝐴) ∈ ℂ)
4915adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℂ)
5049, 41logcld 24298 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (log‘𝐵) ∈ ℂ)
5146, 48, 50adddid 10049 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐶 · ((log‘𝐴) + (log‘𝐵))) = ((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵))))
5245, 51eqtrd 2654 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐶 · (log‘(𝐴 · 𝐵))) = ((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵))))
5352fveq2d 6182 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))) = (exp‘((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))))
5446, 48mulcld 10045 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐶 · (log‘𝐴)) ∈ ℂ)
5546, 50mulcld 10045 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐶 · (log‘𝐵)) ∈ ℂ)
56 efadd 14805 . . . . . . 7 (((𝐶 · (log‘𝐴)) ∈ ℂ ∧ (𝐶 · (log‘𝐵)) ∈ ℂ) → (exp‘((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵)))))
5754, 55, 56syl2anc 692 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (exp‘((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵)))))
5853, 57eqtrd 2654 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵)))))
5947, 49mulcld 10045 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℂ)
6047, 49, 36, 41mulne0d 10664 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ≠ 0)
61 cxpef 24392 . . . . . 6 (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐵) ≠ 0 ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))))
6259, 60, 46, 61syl3anc 1324 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵)↑𝑐𝐶) = (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))))
63 cxpef 24392 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
6447, 36, 46, 63syl3anc 1324 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
65 cxpef 24392 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
6649, 41, 46, 65syl3anc 1324 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
6764, 66oveq12d 6653 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵)))))
6858, 62, 673eqtr4d 2664 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))
6968exp32 630 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐴 ≠ 0 → (𝐵 ≠ 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))))
7033, 69pm2.61dne 2877 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐵 ≠ 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶))))
7113, 70pm2.61dne 2877 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1481   ∈ wcel 1988   ≠ wne 2791   class class class wbr 4644  ‘cfv 5876  (class class class)co 6635  ℂcc 9919  ℝcr 9920  0cc0 9921   + caddc 9924   · cmul 9926   ≤ cle 10060  expce 14773  logclog 24282  ↑𝑐ccxp 24283 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ioc 12165  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-bc 13073  df-hash 13101  df-shft 13788  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-sum 14398  df-ef 14779  df-sin 14781  df-cos 14782  df-pi 14784  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cncf 22662  df-limc 23611  df-dv 23612  df-log 24284  df-cxp 24285 This theorem is referenced by:  cxprec  24413  divcxp  24414  mulcxpd  24455  amgmlemALT  42314
 Copyright terms: Public domain W3C validator