MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcxpd Structured version   Visualization version   GIF version

Theorem mulcxpd 24186
Description: Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
recxpcld.1 (𝜑𝐴 ∈ ℝ)
recxpcld.2 (𝜑 → 0 ≤ 𝐴)
recxpcld.3 (𝜑𝐵 ∈ ℝ)
mulcxpd.4 (𝜑 → 0 ≤ 𝐵)
mulcxpd.5 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
mulcxpd (𝜑 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))

Proof of Theorem mulcxpd
StepHypRef Expression
1 recxpcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 recxpcld.2 . 2 (𝜑 → 0 ≤ 𝐴)
3 recxpcld.3 . 2 (𝜑𝐵 ∈ ℝ)
4 mulcxpd.4 . 2 (𝜑 → 0 ≤ 𝐵)
5 mulcxpd.5 . 2 (𝜑𝐶 ∈ ℂ)
6 mulcxp 24143 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))
71, 2, 3, 4, 5, 6syl221anc 1328 1 (𝜑 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1975   class class class wbr 4572  (class class class)co 6522  cc 9785  cr 9786  0cc0 9787   · cmul 9792  cle 9926  𝑐ccxp 24018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-inf2 8393  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-pre-sup 9865  ax-addf 9866  ax-mulf 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-int 4400  df-iun 4446  df-iin 4447  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-se 4983  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-isom 5794  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-of 6767  df-om 6930  df-1st 7031  df-2nd 7032  df-supp 7155  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-2o 7420  df-oadd 7423  df-er 7601  df-map 7718  df-pm 7719  df-ixp 7767  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-fsupp 8131  df-fi 8172  df-sup 8203  df-inf 8204  df-oi 8270  df-card 8620  df-cda 8845  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529  df-nn 10863  df-2 10921  df-3 10922  df-4 10923  df-5 10924  df-6 10925  df-7 10926  df-8 10927  df-9 10928  df-n0 11135  df-z 11206  df-dec 11321  df-uz 11515  df-q 11616  df-rp 11660  df-xneg 11773  df-xadd 11774  df-xmul 11775  df-ioo 12001  df-ioc 12002  df-ico 12003  df-icc 12004  df-fz 12148  df-fzo 12285  df-fl 12405  df-mod 12481  df-seq 12614  df-exp 12673  df-fac 12873  df-bc 12902  df-hash 12930  df-shft 13596  df-cj 13628  df-re 13629  df-im 13630  df-sqrt 13764  df-abs 13765  df-limsup 13991  df-clim 14008  df-rlim 14009  df-sum 14206  df-ef 14578  df-sin 14580  df-cos 14581  df-pi 14583  df-struct 15638  df-ndx 15639  df-slot 15640  df-base 15641  df-sets 15642  df-ress 15643  df-plusg 15722  df-mulr 15723  df-starv 15724  df-sca 15725  df-vsca 15726  df-ip 15727  df-tset 15728  df-ple 15729  df-ds 15732  df-unif 15733  df-hom 15734  df-cco 15735  df-rest 15847  df-topn 15848  df-0g 15866  df-gsum 15867  df-topgen 15868  df-pt 15869  df-prds 15872  df-xrs 15926  df-qtop 15931  df-imas 15932  df-xps 15934  df-mre 16010  df-mrc 16011  df-acs 16013  df-mgm 17006  df-sgrp 17048  df-mnd 17059  df-submnd 17100  df-mulg 17305  df-cntz 17514  df-cmn 17959  df-psmet 19500  df-xmet 19501  df-met 19502  df-bl 19503  df-mopn 19504  df-fbas 19505  df-fg 19506  df-cnfld 19509  df-top 20458  df-bases 20459  df-topon 20460  df-topsp 20461  df-cld 20570  df-ntr 20571  df-cls 20572  df-nei 20649  df-lp 20687  df-perf 20688  df-cn 20778  df-cnp 20779  df-haus 20866  df-tx 21112  df-hmeo 21305  df-fil 21397  df-fm 21489  df-flim 21490  df-flf 21491  df-xms 21871  df-ms 21872  df-tms 21873  df-cncf 22415  df-limc 23348  df-dv 23349  df-log 24019  df-cxp 24020
This theorem is referenced by:  sgmmul  24638  abvcxp  25016  binomcxplemnotnn0  37375
  Copyright terms: Public domain W3C validator