![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcxplem | Structured version Visualization version GIF version |
Description: Lemma for mulcxp 24628. (Contributed by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
mulcxp.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mulcxp.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mulcxplem | ⊢ (𝜑 → (0↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (0↑𝑐𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6819 | . . . 4 ⊢ (𝐶 = 0 → (0↑𝑐𝐶) = (0↑𝑐0)) | |
2 | 0cn 10222 | . . . . 5 ⊢ 0 ∈ ℂ | |
3 | cxp0 24613 | . . . . 5 ⊢ (0 ∈ ℂ → (0↑𝑐0) = 1) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (0↑𝑐0) = 1 |
5 | 1, 4 | syl6eq 2808 | . . 3 ⊢ (𝐶 = 0 → (0↑𝑐𝐶) = 1) |
6 | oveq2 6819 | . . . 4 ⊢ (𝐶 = 0 → (𝐴↑𝑐𝐶) = (𝐴↑𝑐0)) | |
7 | 6, 5 | oveq12d 6829 | . . 3 ⊢ (𝐶 = 0 → ((𝐴↑𝑐𝐶) · (0↑𝑐𝐶)) = ((𝐴↑𝑐0) · 1)) |
8 | 5, 7 | eqeq12d 2773 | . 2 ⊢ (𝐶 = 0 → ((0↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (0↑𝑐𝐶)) ↔ 1 = ((𝐴↑𝑐0) · 1))) |
9 | mulcxp.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
10 | mulcxp.2 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
11 | cxpcl 24617 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) ∈ ℂ) | |
12 | 9, 10, 11 | syl2anc 696 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑐𝐶) ∈ ℂ) |
13 | 12 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≠ 0) → (𝐴↑𝑐𝐶) ∈ ℂ) |
14 | 13 | mul01d 10425 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 0) → ((𝐴↑𝑐𝐶) · 0) = 0) |
15 | 0cxp 24609 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (0↑𝑐𝐶) = 0) | |
16 | 10, 15 | sylan 489 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≠ 0) → (0↑𝑐𝐶) = 0) |
17 | 16 | oveq2d 6827 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 0) → ((𝐴↑𝑐𝐶) · (0↑𝑐𝐶)) = ((𝐴↑𝑐𝐶) · 0)) |
18 | 14, 17, 16 | 3eqtr4rd 2803 | . 2 ⊢ ((𝜑 ∧ 𝐶 ≠ 0) → (0↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (0↑𝑐𝐶))) |
19 | cxp0 24613 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴↑𝑐0) = 1) | |
20 | 9, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑐0) = 1) |
21 | 20 | oveq1d 6826 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑐0) · 1) = (1 · 1)) |
22 | 1t1e1 11365 | . . 3 ⊢ (1 · 1) = 1 | |
23 | 21, 22 | syl6req 2809 | . 2 ⊢ (𝜑 → 1 = ((𝐴↑𝑐0) · 1)) |
24 | 8, 18, 23 | pm2.61ne 3015 | 1 ⊢ (𝜑 → (0↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (0↑𝑐𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ≠ wne 2930 (class class class)co 6811 ℂcc 10124 0cc0 10126 1c1 10127 · cmul 10131 ↑𝑐ccxp 24499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-inf2 8709 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 ax-pre-sup 10204 ax-addf 10205 ax-mulf 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-iin 4673 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-se 5224 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-isom 6056 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-of 7060 df-om 7229 df-1st 7331 df-2nd 7332 df-supp 7462 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-2o 7728 df-oadd 7731 df-er 7909 df-map 8023 df-pm 8024 df-ixp 8073 df-en 8120 df-dom 8121 df-sdom 8122 df-fin 8123 df-fsupp 8439 df-fi 8480 df-sup 8511 df-inf 8512 df-oi 8578 df-card 8953 df-cda 9180 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-div 10875 df-nn 11211 df-2 11269 df-3 11270 df-4 11271 df-5 11272 df-6 11273 df-7 11274 df-8 11275 df-9 11276 df-n0 11483 df-z 11568 df-dec 11684 df-uz 11878 df-q 11980 df-rp 12024 df-xneg 12137 df-xadd 12138 df-xmul 12139 df-ioo 12370 df-ioc 12371 df-ico 12372 df-icc 12373 df-fz 12518 df-fzo 12658 df-fl 12785 df-mod 12861 df-seq 12994 df-exp 13053 df-fac 13253 df-bc 13282 df-hash 13310 df-shft 14004 df-cj 14036 df-re 14037 df-im 14038 df-sqrt 14172 df-abs 14173 df-limsup 14399 df-clim 14416 df-rlim 14417 df-sum 14614 df-ef 14995 df-sin 14997 df-cos 14998 df-pi 15000 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-sets 16064 df-ress 16065 df-plusg 16154 df-mulr 16155 df-starv 16156 df-sca 16157 df-vsca 16158 df-ip 16159 df-tset 16160 df-ple 16161 df-ds 16164 df-unif 16165 df-hom 16166 df-cco 16167 df-rest 16283 df-topn 16284 df-0g 16302 df-gsum 16303 df-topgen 16304 df-pt 16305 df-prds 16308 df-xrs 16362 df-qtop 16367 df-imas 16368 df-xps 16370 df-mre 16446 df-mrc 16447 df-acs 16449 df-mgm 17441 df-sgrp 17483 df-mnd 17494 df-submnd 17535 df-mulg 17740 df-cntz 17948 df-cmn 18393 df-psmet 19938 df-xmet 19939 df-met 19940 df-bl 19941 df-mopn 19942 df-fbas 19943 df-fg 19944 df-cnfld 19947 df-top 20899 df-topon 20916 df-topsp 20937 df-bases 20950 df-cld 21023 df-ntr 21024 df-cls 21025 df-nei 21102 df-lp 21140 df-perf 21141 df-cn 21231 df-cnp 21232 df-haus 21319 df-tx 21565 df-hmeo 21758 df-fil 21849 df-fm 21941 df-flim 21942 df-flf 21943 df-xms 22324 df-ms 22325 df-tms 22326 df-cncf 22880 df-limc 23827 df-dv 23828 df-log 24500 df-cxp 24501 |
This theorem is referenced by: mulcxp 24628 |
Copyright terms: Public domain | W3C validator |