MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muleqadd Structured version   Visualization version   GIF version

Theorem muleqadd 11286
Description: Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
Assertion
Ref Expression
muleqadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1))

Proof of Theorem muleqadd
StepHypRef Expression
1 ax-1cn 10597 . . . . 5 1 ∈ ℂ
2 mulsub 11085 . . . . . 6 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
31, 2mpanr2 702 . . . . 5 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
41, 3mpanl2 699 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
51mulid1i 10647 . . . . . . 7 (1 · 1) = 1
65oveq2i 7169 . . . . . 6 ((𝐴 · 𝐵) + (1 · 1)) = ((𝐴 · 𝐵) + 1)
76a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) + (1 · 1)) = ((𝐴 · 𝐵) + 1))
8 mulid1 10641 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
9 mulid1 10641 . . . . . 6 (𝐵 ∈ ℂ → (𝐵 · 1) = 𝐵)
108, 9oveqan12d 7177 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 1) + (𝐵 · 1)) = (𝐴 + 𝐵))
117, 10oveq12d 7176 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) = (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)))
12 mulcl 10623 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
13 addcl 10621 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
14 addsub 10899 . . . . . 6 (((𝐴 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
151, 14mp3an2 1445 . . . . 5 (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℂ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
1612, 13, 15syl2anc 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
174, 11, 163eqtrd 2862 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1))
1817eqeq1d 2825 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 − 1) · (𝐵 − 1)) = 1 ↔ (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = 1))
191addid2i 10830 . . . 4 (0 + 1) = 1
2019eqeq2i 2836 . . 3 ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = 1)
2112, 13subcld 10999 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) − (𝐴 + 𝐵)) ∈ ℂ)
22 0cn 10635 . . . . 5 0 ∈ ℂ
23 addcan2 10827 . . . . 5 ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) ∈ ℂ ∧ 0 ∈ ℂ ∧ 1 ∈ ℂ) → ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ ((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0))
2422, 1, 23mp3an23 1449 . . . 4 (((𝐴 · 𝐵) − (𝐴 + 𝐵)) ∈ ℂ → ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ ((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0))
2521, 24syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = (0 + 1) ↔ ((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0))
2620, 25syl5rbbr 288 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0 ↔ (((𝐴 · 𝐵) − (𝐴 + 𝐵)) + 1) = 1))
2712, 13subeq0ad 11009 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵) − (𝐴 + 𝐵)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 + 𝐵)))
2818, 26, 273bitr2rd 310 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-ltxr 10682  df-sub 10874  df-neg 10875
This theorem is referenced by:  conjmul  11359
  Copyright terms: Public domain W3C validator