MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulerpq Structured version   Visualization version   GIF version

Theorem mulerpq 9538
Description: Multiplication is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulerpq (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵))

Proof of Theorem mulerpq
StepHypRef Expression
1 nqercl 9512 . . . 4 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q)
2 nqercl 9512 . . . 4 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q)
3 mulpqnq 9522 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵))))
41, 2, 3syl2an 492 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵))))
5 enqer 9502 . . . . . 6 ~Q Er (N × N)
65a1i 11 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ~Q Er (N × N))
7 nqerrel 9513 . . . . . . 7 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
87adantr 479 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐴 ~Q ([Q]‘𝐴))
9 elpqn 9506 . . . . . . . . 9 (([Q]‘𝐴) ∈ Q → ([Q]‘𝐴) ∈ (N × N))
101, 9syl 17 . . . . . . . 8 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ (N × N))
11 mulerpqlem 9536 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵)))
12113exp 1255 . . . . . . . 8 (𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵)))))
1310, 12mpd 15 . . . . . . 7 (𝐴 ∈ (N × N) → (𝐵 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵))))
1413imp 443 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵)))
158, 14mpbid 220 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ 𝐵))
16 nqerrel 9513 . . . . . . . 8 (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵))
1716adantl 480 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 𝐵 ~Q ([Q]‘𝐵))
18 elpqn 9506 . . . . . . . . . 10 (([Q]‘𝐵) ∈ Q → ([Q]‘𝐵) ∈ (N × N))
192, 18syl 17 . . . . . . . . 9 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ (N × N))
20 mulerpqlem 9536 . . . . . . . . . 10 ((𝐵 ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴))))
21203exp 1255 . . . . . . . . 9 (𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴))))))
2219, 21mpd 15 . . . . . . . 8 (𝐵 ∈ (N × N) → (([Q]‘𝐴) ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴)))))
2310, 22mpan9 484 . . . . . . 7 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴))))
2417, 23mpbid 220 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ·pQ ([Q]‘𝐴)) ~Q (([Q]‘𝐵) ·pQ ([Q]‘𝐴)))
25 mulcompq 9533 . . . . . 6 (𝐵 ·pQ ([Q]‘𝐴)) = (([Q]‘𝐴) ·pQ 𝐵)
26 mulcompq 9533 . . . . . 6 (([Q]‘𝐵) ·pQ ([Q]‘𝐴)) = (([Q]‘𝐴) ·pQ ([Q]‘𝐵))
2724, 25, 263brtr3g 4514 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)))
286, 15, 27ertrd 7525 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)))
29 mulpqf 9527 . . . . . 6 ·pQ :((N × N) × (N × N))⟶(N × N)
3029fovcl 6545 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N × N))
3129fovcl 6545 . . . . . 6 ((([Q]‘𝐴) ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ∈ (N × N))
3210, 19, 31syl2an 492 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ∈ (N × N))
33 nqereq 9516 . . . . 5 (((𝐴 ·pQ 𝐵) ∈ (N × N) ∧ (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ∈ (N × N)) → ((𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵)))))
3430, 32, 33syl2anc 690 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 ·pQ 𝐵) ~Q (([Q]‘𝐴) ·pQ ([Q]‘𝐵)) ↔ ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵)))))
3528, 34mpbid 220 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 ·pQ 𝐵)) = ([Q]‘(([Q]‘𝐴) ·pQ ([Q]‘𝐵))))
364, 35eqtr4d 2551 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵)))
37 0nnq 9505 . . . . . . . 8 ¬ ∅ ∈ Q
38 nqerf 9511 . . . . . . . . . . . 12 [Q]:(N × N)⟶Q
3938fdmi 5855 . . . . . . . . . . 11 dom [Q] = (N × N)
4039eleq2i 2584 . . . . . . . . . 10 (𝐴 ∈ dom [Q] ↔ 𝐴 ∈ (N × N))
41 ndmfv 6017 . . . . . . . . . 10 𝐴 ∈ dom [Q] → ([Q]‘𝐴) = ∅)
4240, 41sylnbir 319 . . . . . . . . 9 𝐴 ∈ (N × N) → ([Q]‘𝐴) = ∅)
4342eleq1d 2576 . . . . . . . 8 𝐴 ∈ (N × N) → (([Q]‘𝐴) ∈ Q ↔ ∅ ∈ Q))
4437, 43mtbiri 315 . . . . . . 7 𝐴 ∈ (N × N) → ¬ ([Q]‘𝐴) ∈ Q)
4544con4i 111 . . . . . 6 (([Q]‘𝐴) ∈ Q𝐴 ∈ (N × N))
4639eleq2i 2584 . . . . . . . . . 10 (𝐵 ∈ dom [Q] ↔ 𝐵 ∈ (N × N))
47 ndmfv 6017 . . . . . . . . . 10 𝐵 ∈ dom [Q] → ([Q]‘𝐵) = ∅)
4846, 47sylnbir 319 . . . . . . . . 9 𝐵 ∈ (N × N) → ([Q]‘𝐵) = ∅)
4948eleq1d 2576 . . . . . . . 8 𝐵 ∈ (N × N) → (([Q]‘𝐵) ∈ Q ↔ ∅ ∈ Q))
5037, 49mtbiri 315 . . . . . . 7 𝐵 ∈ (N × N) → ¬ ([Q]‘𝐵) ∈ Q)
5150con4i 111 . . . . . 6 (([Q]‘𝐵) ∈ Q𝐵 ∈ (N × N))
5245, 51anim12i 587 . . . . 5 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
5352con3i 148 . . . 4 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ¬ (([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q))
54 mulnqf 9530 . . . . . 6 ·Q :(Q × Q)⟶Q
5554fdmi 5855 . . . . 5 dom ·Q = (Q × Q)
5655ndmov 6597 . . . 4 (¬ (([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ∅)
5753, 56syl 17 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ∅)
58 0nelxp 4961 . . . . . 6 ¬ ∅ ∈ (N × N)
5939eleq2i 2584 . . . . . 6 (∅ ∈ dom [Q] ↔ ∅ ∈ (N × N))
6058, 59mtbir 311 . . . . 5 ¬ ∅ ∈ dom [Q]
6129fdmi 5855 . . . . . . 7 dom ·pQ = ((N × N) × (N × N))
6261ndmov 6597 . . . . . 6 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ∅)
6362eleq1d 2576 . . . . 5 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((𝐴 ·pQ 𝐵) ∈ dom [Q] ↔ ∅ ∈ dom [Q]))
6460, 63mtbiri 315 . . . 4 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ¬ (𝐴 ·pQ 𝐵) ∈ dom [Q])
65 ndmfv 6017 . . . 4 (¬ (𝐴 ·pQ 𝐵) ∈ dom [Q] → ([Q]‘(𝐴 ·pQ 𝐵)) = ∅)
6664, 65syl 17 . . 3 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ([Q]‘(𝐴 ·pQ 𝐵)) = ∅)
6757, 66eqtr4d 2551 . 2 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵)))
6836, 67pm2.61i 174 1 (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1938  c0 3777   class class class wbr 4481   × cxp 4930  dom cdm 4932  cfv 5694  (class class class)co 6431   Er wer 7506  Ncnpi 9425   ·pQ cmpq 9430   ~Q ceq 9432  Qcnq 9433  [Q]cerq 9435   ·Q cmq 9437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6728
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5658  df-fun 5696  df-fn 5697  df-f 5698  df-f1 5699  df-fo 5700  df-f1o 5701  df-fv 5702  df-ov 6434  df-oprab 6435  df-mpt2 6436  df-om 6839  df-1st 6939  df-2nd 6940  df-wrecs 7174  df-recs 7235  df-rdg 7273  df-1o 7327  df-oadd 7331  df-omul 7332  df-er 7509  df-ni 9453  df-mi 9455  df-lti 9456  df-mpq 9490  df-enq 9492  df-nq 9493  df-erq 9494  df-mq 9496  df-1nq 9497
This theorem is referenced by:  mulassnq  9540  distrnq  9542  recmulnq  9545
  Copyright terms: Public domain W3C validator