MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulexpz Structured version   Visualization version   GIF version

Theorem mulexpz 12713
Description: Integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
mulexpz (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))

Proof of Theorem mulexpz
StepHypRef Expression
1 elznn0nn 11220 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 simpl 471 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
3 simpl 471 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
42, 3anim12i 587 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5 mulexp 12712 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
653expa 1256 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
74, 6sylan 486 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
8 simplll 793 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ)
9 simplrl 795 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐵 ∈ ℂ)
108, 9mulcld 9912 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴 · 𝐵) ∈ ℂ)
11 recn 9878 . . . . . . 7 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
1211ad2antrl 759 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
13 nnnn0 11142 . . . . . . 7 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
1413ad2antll 760 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
15 expneg2 12682 . . . . . 6 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = (1 / ((𝐴 · 𝐵)↑-𝑁)))
1610, 12, 14, 15syl3anc 1317 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑𝑁) = (1 / ((𝐴 · 𝐵)↑-𝑁)))
17 expneg2 12682 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
188, 12, 14, 17syl3anc 1317 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
19 expneg2 12682 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
209, 12, 14, 19syl3anc 1317 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
2118, 20oveq12d 6541 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴𝑁) · (𝐵𝑁)) = ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))))
22 mulexp 12712 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑-𝑁) = ((𝐴↑-𝑁) · (𝐵↑-𝑁)))
238, 9, 14, 22syl3anc 1317 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑-𝑁) = ((𝐴↑-𝑁) · (𝐵↑-𝑁)))
2423oveq2d 6539 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = (1 / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
25 1t1e1 11018 . . . . . . . . 9 (1 · 1) = 1
2625oveq1i 6533 . . . . . . . 8 ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))) = (1 / ((𝐴↑-𝑁) · (𝐵↑-𝑁)))
2724, 26syl6eqr 2657 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
28 expcl 12691 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) ∈ ℂ)
298, 14, 28syl2anc 690 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ∈ ℂ)
30 simpllr 794 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ≠ 0)
31 nnz 11228 . . . . . . . . . 10 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
3231ad2antll 760 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
33 expne0i 12705 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) ≠ 0)
348, 30, 32, 33syl3anc 1317 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ≠ 0)
35 expcl 12691 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵↑-𝑁) ∈ ℂ)
369, 14, 35syl2anc 690 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵↑-𝑁) ∈ ℂ)
37 simplrr 796 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐵 ≠ 0)
38 expne0i 12705 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐵↑-𝑁) ≠ 0)
399, 37, 32, 38syl3anc 1317 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵↑-𝑁) ≠ 0)
40 ax-1cn 9846 . . . . . . . . 9 1 ∈ ℂ
41 divmuldiv 10570 . . . . . . . . 9 (((1 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) ≠ 0) ∧ ((𝐵↑-𝑁) ∈ ℂ ∧ (𝐵↑-𝑁) ≠ 0))) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
4240, 40, 41mpanl12 713 . . . . . . . 8 ((((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) ≠ 0) ∧ ((𝐵↑-𝑁) ∈ ℂ ∧ (𝐵↑-𝑁) ≠ 0)) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
4329, 34, 36, 39, 42syl22anc 1318 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
4427, 43eqtr4d 2642 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))))
4521, 44eqtr4d 2642 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴𝑁) · (𝐵𝑁)) = (1 / ((𝐴 · 𝐵)↑-𝑁)))
4616, 45eqtr4d 2642 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
477, 46jaodan 821 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
481, 47sylan2b 490 . 2 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
49483impa 1250 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1975  wne 2775  (class class class)co 6523  cc 9786  cr 9787  0cc0 9788  1c1 9789   · cmul 9793  -cneg 10114   / cdiv 10529  cn 10863  0cn0 11135  cz 11206  cexp 12673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-n0 11136  df-z 11207  df-uz 11516  df-seq 12615  df-exp 12674
This theorem is referenced by:  exprec  12714  knoppndvlem14  31488  knoppndvlem17  31491
  Copyright terms: Public domain W3C validator