MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgaddcomlem Structured version   Visualization version   GIF version

Theorem mulgaddcomlem 17557
Description: Lemma for mulgaddcom 17558. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b 𝐵 = (Base‘𝐺)
mulgaddcom.t · = (.g𝐺)
mulgaddcom.p + = (+g𝐺)
Assertion
Ref Expression
mulgaddcomlem (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))

Proof of Theorem mulgaddcomlem
StepHypRef Expression
1 simp1 1060 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → 𝐺 ∈ Grp)
21adantr 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝐺 ∈ Grp)
3 simp3 1062 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → 𝑋𝐵)
43adantr 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝑋𝐵)
5 znegcl 11409 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6 mulgaddcom.b . . . . . . . 8 𝐵 = (Base‘𝐺)
7 mulgaddcom.t . . . . . . . 8 · = (.g𝐺)
86, 7mulgcl 17553 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) ∈ 𝐵)
95, 8syl3an2 1359 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) ∈ 𝐵)
109adantr 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) ∈ 𝐵)
11 eqid 2621 . . . . . . . 8 (invg𝐺) = (invg𝐺)
126, 11grpinvcl 17461 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
13123adant2 1079 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
1413adantr 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘𝑋) ∈ 𝐵)
15 mulgaddcom.p . . . . . 6 + = (+g𝐺)
166, 15grpass 17425 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵 ∧ ((invg𝐺)‘𝑋) ∈ 𝐵)) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))))
172, 4, 10, 14, 16syl13anc 1327 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))))
186, 7, 11mulgneg 17554 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = ((invg𝐺)‘(𝑦 · 𝑋)))
1918adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) = ((invg𝐺)‘(𝑦 · 𝑋)))
2019oveq1d 6662 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋)) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
216, 7mulgcl 17553 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
2221adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑦 · 𝑋) ∈ 𝐵)
236, 15, 11grpinvadd 17487 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑦 · 𝑋) ∈ 𝐵) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
242, 4, 22, 23syl3anc 1325 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
2519oveq2d 6663 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
266, 15, 11grpinvadd 17487 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
272, 22, 4, 26syl3anc 1325 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
28 fveq2 6189 . . . . . . . 8 (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))))
2928adantl 482 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))))
3025, 27, 293eqtr2rd 2662 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)))
3120, 24, 303eqtr2d 2661 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋)) = (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)))
3231oveq2d 6663 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))) = (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))))
336, 15, 11grpasscan1 17472 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋))
342, 4, 10, 33syl3anc 1325 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋))
3517, 32, 343eqtrd 2659 . . 3 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (-𝑦 · 𝑋))
3635oveq1d 6662 . 2 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = ((-𝑦 · 𝑋) + 𝑋))
376, 15grpcl 17424 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
381, 3, 9, 37syl3anc 1325 . . . 4 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
3938adantr 481 . . 3 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
406, 15, 11grpasscan2 17473 . . 3 ((𝐺 ∈ Grp ∧ (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵𝑋𝐵) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
412, 39, 4, 40syl3anc 1325 . 2 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
4236, 41eqtr3d 2657 1 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1482  wcel 1989  cfv 5886  (class class class)co 6647  -cneg 10264  cz 11374  Basecbs 15851  +gcplusg 15935  Grpcgrp 17416  invgcminusg 17417  .gcmg 17534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-seq 12797  df-0g 16096  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-grp 17419  df-minusg 17420  df-mulg 17535
This theorem is referenced by:  mulgaddcom  17558
  Copyright terms: Public domain W3C validator