MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgcddvds Structured version   Visualization version   GIF version

Theorem mulgcddvds 15304
Description: One half of rpmulgcd2 15305, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
mulgcddvds ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))

Proof of Theorem mulgcddvds
StepHypRef Expression
1 simp1 1059 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
2 simp2 1060 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
3 simp3 1061 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
42, 3zmulcld 11440 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
51, 4gcdcld 15165 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℕ0)
65nn0zd 11432 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ)
7 dvds0 14932 . . . . 5 ((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
86, 7syl 17 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
98adantr 481 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 0)
10 oveq2 6618 . . . 4 ((𝐾 gcd 𝑁) = 0 → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) = ((𝐾 gcd 𝑀) · 0))
111, 2gcdcld 15165 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℕ0)
1211nn0cnd 11305 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℂ)
1312mul01d 10187 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑀) · 0) = 0)
1410, 13sylan9eqr 2677 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)) = 0)
159, 14breqtrrd 4646 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) = 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
166adantr 481 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ)
1716zcnd 11435 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∈ ℂ)
181, 3gcdcld 15165 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℕ0)
1918nn0zd 11432 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℤ)
2019adantr 481 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∈ ℤ)
2120zcnd 11435 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∈ ℂ)
22 simpr 477 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ≠ 0)
2317, 21, 22divcan1d 10754 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) = (𝐾 gcd (𝑀 · 𝑁)))
24 gcddvds 15160 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁)))
251, 4, 24syl2anc 692 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁)))
2625simpld 475 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾)
27 dvdsmultr1 14954 . . . . . . . . . 10 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁))))
286, 1, 19, 27syl3anc 1323 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁))))
2926, 28mpd 15 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
3029adantr 481 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
3123, 30eqbrtrd 4640 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)))
32 gcddvds 15160 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
331, 3, 32syl2anc 692 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ 𝑁))
3433simpld 475 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ 𝐾)
3533simprd 479 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ 𝑁)
36 dvdsmultr2 14956 . . . . . . . . . . . 12 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)))
3719, 2, 3, 36syl3anc 1323 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ 𝑁 → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)))
3835, 37mpd 15 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁))
39 dvdsgcd 15196 . . . . . . . . . . 11 (((𝐾 gcd 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁))))
4019, 1, 4, 39syl3anc 1323 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd 𝑁) ∥ 𝐾 ∧ (𝐾 gcd 𝑁) ∥ (𝑀 · 𝑁)) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁))))
4134, 38, 40mp2and 714 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)))
4241adantr 481 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)))
43 dvdsval2 14921 . . . . . . . . 9 (((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0 ∧ (𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ) → ((𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ))
4420, 22, 16, 43syl3anc 1323 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd 𝑁) ∥ (𝐾 gcd (𝑀 · 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ))
4542, 44mpbid 222 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ)
461adantr 481 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → 𝐾 ∈ ℤ)
47 dvdsmulcr 14946 . . . . . . 7 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0)) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾))
4845, 46, 20, 22, 47syl112anc 1327 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝐾 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾))
4931, 48mpbid 222 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾)
50 nn0abscl 13994 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
512, 50syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℕ0)
5251nn0zd 11432 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℤ)
53 dvdsmultr2 14956 . . . . . . . . . . . . 13 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ (abs‘𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾)))
546, 52, 1, 53syl3anc 1323 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ 𝐾 → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾)))
5526, 54mpd 15 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾))
5625simprd 479 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁))
57 iddvds 14930 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀𝑀)
582, 57syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀𝑀)
59 dvdsabsb 14936 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑀𝑀 ∥ (abs‘𝑀)))
602, 2, 59syl2anc 692 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑀𝑀 ∥ (abs‘𝑀)))
6158, 60mpbid 222 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (abs‘𝑀))
62 dvdsmulc 14944 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ (abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘𝑀) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)))
632, 52, 3, 62syl3anc 1323 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘𝑀) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)))
6461, 63mpd 15 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁))
6552, 3zmulcld 11440 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · 𝑁) ∈ ℤ)
66 dvdstr 14953 . . . . . . . . . . . . 13 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ ∧ ((abs‘𝑀) · 𝑁) ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁) ∧ (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)))
676, 4, 65, 66syl3anc 1323 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · 𝑁) ∧ (𝑀 · 𝑁) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)))
6856, 64, 67mp2and 714 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁))
6952, 1zmulcld 11440 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · 𝐾) ∈ ℤ)
70 dvdsgcd 15196 . . . . . . . . . . . 12 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ ((abs‘𝑀) · 𝐾) ∈ ℤ ∧ ((abs‘𝑀) · 𝑁) ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾) ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁))))
716, 69, 65, 70syl3anc 1323 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝐾) ∧ (𝐾 gcd (𝑀 · 𝑁)) ∥ ((abs‘𝑀) · 𝑁)) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁))))
7255, 68, 71mp2and 714 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)))
7318nn0red 11304 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℝ)
7418nn0ge0d 11306 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝐾 gcd 𝑁))
7573, 74absidd 14103 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐾 gcd 𝑁)) = (𝐾 gcd 𝑁))
7675oveq2d 6626 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) · (abs‘(𝐾 gcd 𝑁))) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
772zcnd 11435 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
7818nn0cnd 11305 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑁) ∈ ℂ)
7977, 78absmuld 14135 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · (𝐾 gcd 𝑁))) = ((abs‘𝑀) · (abs‘(𝐾 gcd 𝑁))))
80 mulgcd 15200 . . . . . . . . . . . 12 (((abs‘𝑀) ∈ ℕ0𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
8151, 1, 3, 80syl3anc 1323 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)) = ((abs‘𝑀) · (𝐾 gcd 𝑁)))
8276, 79, 813eqtr4d 2665 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 · (𝐾 gcd 𝑁))) = (((abs‘𝑀) · 𝐾) gcd ((abs‘𝑀) · 𝑁)))
8372, 82breqtrrd 4646 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁))))
842, 19zmulcld 11440 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · (𝐾 gcd 𝑁)) ∈ ℤ)
85 dvdsabsb 14936 . . . . . . . . . 10 (((𝐾 gcd (𝑀 · 𝑁)) ∈ ℤ ∧ (𝑀 · (𝐾 gcd 𝑁)) ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁)))))
866, 84, 85syl2anc 692 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ (𝐾 gcd (𝑀 · 𝑁)) ∥ (abs‘(𝑀 · (𝐾 gcd 𝑁)))))
8783, 86mpbird 247 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
8887adantr 481 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
8923, 88eqbrtrd 4640 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)))
902adantr 481 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → 𝑀 ∈ ℤ)
91 dvdsmulcr 14946 . . . . . . 7 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 gcd 𝑁) ∈ ℤ ∧ (𝐾 gcd 𝑁) ≠ 0)) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀))
9245, 90, 20, 22, 91syl112anc 1327 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ (𝑀 · (𝐾 gcd 𝑁)) ↔ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀))
9389, 92mpbid 222 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀)
94 dvdsgcd 15196 . . . . . 6 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀)))
9545, 46, 90, 94syl3anc 1323 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝐾 ∧ ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ 𝑀) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀)))
9649, 93, 95mp2and 714 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → ((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀))
9711nn0zd 11432 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd 𝑀) ∈ ℤ)
9897adantr 481 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd 𝑀) ∈ ℤ)
99 dvdsmulc 14944 . . . . 5 ((((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∈ ℤ ∧ (𝐾 gcd 𝑀) ∈ ℤ ∧ (𝐾 gcd 𝑁) ∈ ℤ) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))))
10045, 98, 20, 99syl3anc 1323 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) ∥ (𝐾 gcd 𝑀) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))))
10196, 100mpd 15 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (((𝐾 gcd (𝑀 · 𝑁)) / (𝐾 gcd 𝑁)) · (𝐾 gcd 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
10223, 101eqbrtrrd 4642 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 gcd 𝑁) ≠ 0) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
10315, 102pm2.61dane 2877 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4618  cfv 5852  (class class class)co 6610  0cc0 9888   · cmul 9893   / cdiv 10636  0cn0 11244  cz 11329  abscabs 13916  cdvds 14918   gcd cgcd 15151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-dvds 14919  df-gcd 15152
This theorem is referenced by:  rpmulgcd2  15305  rpmul  15308
  Copyright terms: Public domain W3C validator