MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdirlem Structured version   Visualization version   GIF version

Theorem mulgdirlem 17337
Description: Lemma for mulgdir 17338. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgdirlem ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgdirlem
StepHypRef Expression
1 simpl1 1056 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
2 grpmnd 17194 . . . . . 6 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
31, 2syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
4 simprl 789 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑀 ∈ ℕ0)
5 simprr 791 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
6 simpl23 1133 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → 𝑋𝐵)
7 mulgnndir.b . . . . . 6 𝐵 = (Base‘𝐺)
8 mulgnndir.t . . . . . 6 · = (.g𝐺)
9 mulgnndir.p . . . . . 6 + = (+g𝐺)
107, 8, 9mulgnn0dir 17336 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
113, 4, 5, 6, 10syl13anc 1319 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
1211anassrs 677 . . 3 ((((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
13 simpl1 1056 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Grp)
14 simp22 1087 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℤ)
1514adantr 479 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℤ)
16 simpl23 1133 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑋𝐵)
17 eqid 2605 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
187, 8, 17mulgneg 17325 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
1913, 15, 16, 18syl3anc 1317 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
2019oveq1d 6538 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑁 · 𝑋) + (𝑁 · 𝑋)) = (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)))
217, 8mulgcl 17324 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
2213, 15, 16, 21syl3anc 1317 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑁 · 𝑋) ∈ 𝐵)
23 eqid 2605 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
247, 9, 23, 17grplinv 17233 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (0g𝐺))
2513, 22, 24syl2anc 690 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((invg𝐺)‘(𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (0g𝐺))
2620, 25eqtrd 2639 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((-𝑁 · 𝑋) + (𝑁 · 𝑋)) = (0g𝐺))
2726oveq2d 6539 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)))
28 simpl3 1058 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0)
29 nn0z 11229 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ ℕ0 → (𝑀 + 𝑁) ∈ ℤ)
3028, 29syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℤ)
317, 8mulgcl 17324 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
3213, 30, 16, 31syl3anc 1317 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
337, 9, 23grprid 17218 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)) = ((𝑀 + 𝑁) · 𝑋))
3413, 32, 33syl2anc 690 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + (0g𝐺)) = ((𝑀 + 𝑁) · 𝑋))
3527, 34eqtrd 2639 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
36 nn0z 11229 . . . . . . . . 9 (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
3736ad2antll 760 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ)
387, 8mulgcl 17324 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
3913, 37, 16, 38syl3anc 1317 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (-𝑁 · 𝑋) ∈ 𝐵)
407, 9grpass 17196 . . . . . . 7 ((𝐺 ∈ Grp ∧ (((𝑀 + 𝑁) · 𝑋) ∈ 𝐵 ∧ (-𝑁 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))))
4113, 32, 39, 22, 40syl13anc 1319 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))))
4213, 2syl 17 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝐺 ∈ Mnd)
43 simprr 791 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
447, 8, 9mulgnn0dir 17336 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∧ -𝑁 ∈ ℕ0𝑋𝐵)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)))
4542, 28, 43, 16, 44syl13anc 1319 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)))
46 simp21 1086 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℤ)
4746zcnd 11311 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℂ)
4814zcnd 11311 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℂ)
4947, 48addcld 9911 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
5049adantr 479 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℂ)
5148adantr 479 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
5250, 51negsubd 10245 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) + -𝑁) = ((𝑀 + 𝑁) − 𝑁))
5347adantr 479 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → 𝑀 ∈ ℂ)
5453, 51pncand 10240 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
5552, 54eqtrd 2639 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) + -𝑁) = 𝑀)
5655oveq1d 6538 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) + -𝑁) · 𝑋) = (𝑀 · 𝑋))
5745, 56eqtr3d 2641 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) = (𝑀 · 𝑋))
5857oveq1d 6538 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((((𝑀 + 𝑁) · 𝑋) + (-𝑁 · 𝑋)) + (𝑁 · 𝑋)) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
5941, 58eqtr3d 2641 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → (((𝑀 + 𝑁) · 𝑋) + ((-𝑁 · 𝑋) + (𝑁 · 𝑋))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6035, 59eqtr3d 2641 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6160anassrs 677 . . 3 ((((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) ∧ -𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
62 elznn0 11221 . . . . . 6 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
6362simprbi 478 . . . . 5 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6414, 63syl 17 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6564adantr 479 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
6612, 61, 65mpjaodan 822 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
67 simpl1 1056 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ Grp)
6846adantr 479 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
69 simpl23 1133 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑋𝐵)
707, 8mulgcl 17324 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
7167, 68, 69, 70syl3anc 1317 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 · 𝑋) ∈ 𝐵)
7268znegcld 11312 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℤ)
737, 8mulgcl 17324 . . . . 5 ((𝐺 ∈ Grp ∧ -𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) ∈ 𝐵)
7467, 72, 69, 73syl3anc 1317 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · 𝑋) ∈ 𝐵)
75293ad2ant3 1076 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
7675adantr 479 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
7767, 76, 69, 31syl3anc 1317 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
787, 9grpass 17196 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) ∈ 𝐵 ∧ (-𝑀 · 𝑋) ∈ 𝐵 ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))))
7967, 71, 74, 77, 78syl13anc 1319 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))))
807, 8, 17mulgneg 17325 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
8167, 68, 69, 80syl3anc 1317 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
8281oveq2d 6539 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (-𝑀 · 𝑋)) = ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))))
837, 9, 23, 17grprinv 17234 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))) = (0g𝐺))
8467, 71, 83syl2anc 690 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + ((invg𝐺)‘(𝑀 · 𝑋))) = (0g𝐺))
8582, 84eqtrd 2639 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (-𝑀 · 𝑋)) = (0g𝐺))
8685oveq1d 6538 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)))
877, 9, 23grplid 17217 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
8867, 77, 87syl2anc 690 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((0g𝐺) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
8986, 88eqtrd 2639 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (((𝑀 · 𝑋) + (-𝑀 · 𝑋)) + ((𝑀 + 𝑁) · 𝑋)) = ((𝑀 + 𝑁) · 𝑋))
9067, 2syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ Mnd)
91 simpr 475 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
92 simpl3 1058 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
937, 8, 9mulgnn0dir 17336 . . . . . 6 ((𝐺 ∈ Mnd ∧ (-𝑀 ∈ ℕ0 ∧ (𝑀 + 𝑁) ∈ ℕ0𝑋𝐵)) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)))
9490, 91, 92, 69, 93syl13anc 1319 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)))
9547adantr 479 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑀 ∈ ℂ)
9695negcld 10226 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℂ)
9749adantr 479 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
9896, 97addcomd 10085 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 + (𝑀 + 𝑁)) = ((𝑀 + 𝑁) + -𝑀))
9997, 95negsubd 10245 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = ((𝑀 + 𝑁) − 𝑀))
10048adantr 479 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
10195, 100pncan2d 10241 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
10298, 99, 1013eqtrd 2643 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → (-𝑀 + (𝑀 + 𝑁)) = 𝑁)
103102oveq1d 6538 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 + (𝑀 + 𝑁)) · 𝑋) = (𝑁 · 𝑋))
10494, 103eqtr3d 2641 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋)) = (𝑁 · 𝑋))
105104oveq2d 6539 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + ((-𝑀 · 𝑋) + ((𝑀 + 𝑁) · 𝑋))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
10679, 89, 1053eqtr3d 2647 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) ∧ -𝑀 ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
107 elznn0 11221 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
108107simprbi 478 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
10946, 108syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
11066, 106, 109mpjaodan 822 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1975  cfv 5786  (class class class)co 6523  cc 9786  cr 9787   + caddc 9791  cmin 10113  -cneg 10114  0cn0 11135  cz 11206  Basecbs 15637  +gcplusg 15710  0gc0g 15865  Mndcmnd 17059  Grpcgrp 17187  invgcminusg 17188  .gcmg 17305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-n0 11136  df-z 11207  df-uz 11516  df-fz 12149  df-seq 12615  df-0g 15867  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-grp 17190  df-minusg 17191  df-mulg 17306
This theorem is referenced by:  mulgdir  17338
  Copyright terms: Public domain W3C validator