MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgmhm Structured version   Visualization version   GIF version

Theorem mulgmhm 18154
Description: The map from 𝑥 to 𝑛𝑥 for a fixed positive integer 𝑛 is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
mulgmhm.b 𝐵 = (Base‘𝐺)
mulgmhm.m · = (.g𝐺)
Assertion
Ref Expression
mulgmhm ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑀   𝑥, ·

Proof of Theorem mulgmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 18129 . . . 4 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
21adantr 481 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → 𝐺 ∈ Mnd)
32, 2jca 554 . 2 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝐺 ∈ Mnd ∧ 𝐺 ∈ Mnd))
4 mulgmhm.b . . . . . . 7 𝐵 = (Base‘𝐺)
5 mulgmhm.m . . . . . . 7 · = (.g𝐺)
64, 5mulgnn0cl 17479 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
71, 6syl3an1 1356 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
873expa 1262 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ 𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
9 eqid 2621 . . . 4 (𝑥𝐵 ↦ (𝑀 · 𝑥)) = (𝑥𝐵 ↦ (𝑀 · 𝑥))
108, 9fmptd 6340 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵)
11 3anass 1040 . . . . . . 7 ((𝑀 ∈ ℕ0𝑦𝐵𝑧𝐵) ↔ (𝑀 ∈ ℕ0 ∧ (𝑦𝐵𝑧𝐵)))
12 eqid 2621 . . . . . . . 8 (+g𝐺) = (+g𝐺)
134, 5, 12mulgnn0di 18152 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
1411, 13sylan2br 493 . . . . . 6 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0 ∧ (𝑦𝐵𝑧𝐵))) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
1514anassrs 679 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
164, 12mndcl 17222 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
17163expb 1263 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
182, 17sylan 488 . . . . . 6 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
19 oveq2 6612 . . . . . . 7 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑀 · 𝑥) = (𝑀 · (𝑦(+g𝐺)𝑧)))
20 ovex 6632 . . . . . . 7 (𝑀 · (𝑦(+g𝐺)𝑧)) ∈ V
2119, 9, 20fvmpt 6239 . . . . . 6 ((𝑦(+g𝐺)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
2218, 21syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
23 oveq2 6612 . . . . . . . 8 (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦))
24 ovex 6632 . . . . . . . 8 (𝑀 · 𝑦) ∈ V
2523, 9, 24fvmpt 6239 . . . . . . 7 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦) = (𝑀 · 𝑦))
26 oveq2 6612 . . . . . . . 8 (𝑥 = 𝑧 → (𝑀 · 𝑥) = (𝑀 · 𝑧))
27 ovex 6632 . . . . . . . 8 (𝑀 · 𝑧) ∈ V
2826, 9, 27fvmpt 6239 . . . . . . 7 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧) = (𝑀 · 𝑧))
2925, 28oveqan12d 6623 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
3029adantl 482 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
3115, 22, 303eqtr4d 2665 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)))
3231ralrimivva 2965 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)))
33 eqid 2621 . . . . . 6 (0g𝐺) = (0g𝐺)
344, 33mndidcl 17229 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
35 oveq2 6612 . . . . . 6 (𝑥 = (0g𝐺) → (𝑀 · 𝑥) = (𝑀 · (0g𝐺)))
36 ovex 6632 . . . . . 6 (𝑀 · (0g𝐺)) ∈ V
3735, 9, 36fvmpt 6239 . . . . 5 ((0g𝐺) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (𝑀 · (0g𝐺)))
382, 34, 373syl 18 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (𝑀 · (0g𝐺)))
394, 5, 33mulgnn0z 17488 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
401, 39sylan 488 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
4138, 40eqtrd 2655 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺))
4210, 32, 413jca 1240 . 2 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺)))
434, 4, 12, 12, 33, 33ismhm 17258 . 2 ((𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺))))
443, 42, 43sylanbrc 697 1 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  cmpt 4673  wf 5843  cfv 5847  (class class class)co 6604  0cn0 11236  Basecbs 15781  +gcplusg 15862  0gc0g 16021  Mndcmnd 17215   MndHom cmhm 17254  .gcmg 17461  CMndccmn 18114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-mulg 17462  df-cmn 18116
This theorem is referenced by:  gsummulglem  18262
  Copyright terms: Public domain W3C validator