MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgmhm Structured version   Visualization version   GIF version

Theorem mulgmhm 18950
Description: The map from 𝑥 to 𝑛𝑥 for a fixed positive integer 𝑛 is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
mulgmhm.b 𝐵 = (Base‘𝐺)
mulgmhm.m · = (.g𝐺)
Assertion
Ref Expression
mulgmhm ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑀   𝑥, ·

Proof of Theorem mulgmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 18924 . . 3 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
21adantr 483 . 2 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → 𝐺 ∈ Mnd)
3 mulgmhm.b . . . . . . 7 𝐵 = (Base‘𝐺)
4 mulgmhm.m . . . . . . 7 · = (.g𝐺)
53, 4mulgnn0cl 18246 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
61, 5syl3an1 1159 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
763expa 1114 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ 𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
87fmpttd 6881 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵)
9 3anass 1091 . . . . . . 7 ((𝑀 ∈ ℕ0𝑦𝐵𝑧𝐵) ↔ (𝑀 ∈ ℕ0 ∧ (𝑦𝐵𝑧𝐵)))
10 eqid 2823 . . . . . . . 8 (+g𝐺) = (+g𝐺)
113, 4, 10mulgnn0di 18948 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
129, 11sylan2br 596 . . . . . 6 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0 ∧ (𝑦𝐵𝑧𝐵))) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
1312anassrs 470 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
143, 10mndcl 17921 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
15143expb 1116 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
162, 15sylan 582 . . . . . 6 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
17 oveq2 7166 . . . . . . 7 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑀 · 𝑥) = (𝑀 · (𝑦(+g𝐺)𝑧)))
18 eqid 2823 . . . . . . 7 (𝑥𝐵 ↦ (𝑀 · 𝑥)) = (𝑥𝐵 ↦ (𝑀 · 𝑥))
19 ovex 7191 . . . . . . 7 (𝑀 · (𝑦(+g𝐺)𝑧)) ∈ V
2017, 18, 19fvmpt 6770 . . . . . 6 ((𝑦(+g𝐺)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
2116, 20syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
22 oveq2 7166 . . . . . . . 8 (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦))
23 ovex 7191 . . . . . . . 8 (𝑀 · 𝑦) ∈ V
2422, 18, 23fvmpt 6770 . . . . . . 7 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦) = (𝑀 · 𝑦))
25 oveq2 7166 . . . . . . . 8 (𝑥 = 𝑧 → (𝑀 · 𝑥) = (𝑀 · 𝑧))
26 ovex 7191 . . . . . . . 8 (𝑀 · 𝑧) ∈ V
2725, 18, 26fvmpt 6770 . . . . . . 7 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧) = (𝑀 · 𝑧))
2824, 27oveqan12d 7177 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
2928adantl 484 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
3013, 21, 293eqtr4d 2868 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)))
3130ralrimivva 3193 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)))
32 eqid 2823 . . . . . 6 (0g𝐺) = (0g𝐺)
333, 32mndidcl 17928 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
34 oveq2 7166 . . . . . 6 (𝑥 = (0g𝐺) → (𝑀 · 𝑥) = (𝑀 · (0g𝐺)))
35 ovex 7191 . . . . . 6 (𝑀 · (0g𝐺)) ∈ V
3634, 18, 35fvmpt 6770 . . . . 5 ((0g𝐺) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (𝑀 · (0g𝐺)))
372, 33, 363syl 18 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (𝑀 · (0g𝐺)))
383, 4, 32mulgnn0z 18256 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
391, 38sylan 582 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
4037, 39eqtrd 2858 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺))
418, 31, 403jca 1124 . 2 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺)))
423, 3, 10, 10, 32, 32ismhm 17960 . 2 ((𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺))))
432, 2, 41, 42syl21anbrc 1340 1 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  0cn0 11900  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Mndcmnd 17913   MndHom cmhm 17956  .gcmg 18226  CMndccmn 18908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-mulg 18227  df-cmn 18910
This theorem is referenced by:  gsummulglem  19063
  Copyright terms: Public domain W3C validator