MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgmodid Structured version   Visualization version   GIF version

Theorem mulgmodid 18268
Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
mulgmodid.b 𝐵 = (Base‘𝐺)
mulgmodid.o 0 = (0g𝐺)
mulgmodid.t · = (.g𝐺)
Assertion
Ref Expression
mulgmodid ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋))

Proof of Theorem mulgmodid
StepHypRef Expression
1 zre 11988 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 nnrp 12403 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
3 modval 13242 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
41, 2, 3syl2an 597 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
543ad2ant2 1130 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
65oveq1d 7173 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = ((𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋))
7 zcn 11989 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
87adantr 483 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℂ)
9 nnz 12007 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
109adantl 484 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
11 nnre 11647 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
12 nnne0 11674 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
13 redivcl 11361 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 / 𝑀) ∈ ℝ)
141, 11, 12, 13syl3an 1156 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 / 𝑀) ∈ ℝ)
15143anidm23 1417 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 / 𝑀) ∈ ℝ)
1615flcld 13171 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
1710, 16zmulcld 12096 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
1817zcnd 12091 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℂ)
198, 18negsubd 11005 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
20193ad2ant2 1130 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
2120oveq1d 7173 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋))
22 simp1 1132 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝐺 ∈ Grp)
23 simpl 485 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℤ)
24233ad2ant2 1130 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑁 ∈ ℤ)
25103ad2ant2 1130 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑀 ∈ ℤ)
26163ad2ant2 1130 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
2725, 26zmulcld 12096 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
2827znegcld 12092 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → -(𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
29 simpl 485 . . . . 5 ((𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 ) → 𝑋𝐵)
30293ad2ant3 1131 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑋𝐵)
31 mulgmodid.b . . . . 5 𝐵 = (Base‘𝐺)
32 mulgmodid.t . . . . 5 · = (.g𝐺)
33 eqid 2823 . . . . 5 (+g𝐺) = (+g𝐺)
3431, 32, 33mulgdir 18261 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ -(𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ ∧ 𝑋𝐵)) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
3522, 24, 28, 30, 34syl13anc 1368 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
366, 21, 353eqtr2d 2864 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
37 nncn 11648 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
3837adantl 484 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℂ)
3916zcnd 12091 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 / 𝑀)) ∈ ℂ)
4038, 39mulneg2d 11096 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · -(⌊‘(𝑁 / 𝑀))) = -(𝑀 · (⌊‘(𝑁 / 𝑀))))
41403ad2ant2 1130 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑀 · -(⌊‘(𝑁 / 𝑀))) = -(𝑀 · (⌊‘(𝑁 / 𝑀))))
4241oveq1d 7173 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋))
43153ad2ant2 1130 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 / 𝑀) ∈ ℝ)
4443flcld 13171 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
4544znegcld 12092 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → -(⌊‘(𝑁 / 𝑀)) ∈ ℤ)
4631, 32mulgassr 18267 . . . . . 6 ((𝐺 ∈ Grp ∧ (-(⌊‘(𝑁 / 𝑀)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)))
4722, 45, 25, 30, 46syl13anc 1368 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)))
48 oveq2 7166 . . . . . . 7 ((𝑀 · 𝑋) = 0 → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
4948adantl 484 . . . . . 6 ((𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 ) → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
50493ad2ant3 1131 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
51 mulgmodid.o . . . . . . 7 0 = (0g𝐺)
5231, 32, 51mulgz 18257 . . . . . 6 ((𝐺 ∈ Grp ∧ -(⌊‘(𝑁 / 𝑀)) ∈ ℤ) → (-(⌊‘(𝑁 / 𝑀)) · 0 ) = 0 )
5322, 45, 52syl2anc 586 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(⌊‘(𝑁 / 𝑀)) · 0 ) = 0 )
5447, 50, 533eqtrd 2862 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = 0 )
5542, 54eqtr3d 2860 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋) = 0 )
5655oveq2d 7174 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)) = ((𝑁 · 𝑋)(+g𝐺) 0 ))
57 id 22 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
5831, 32mulgcl 18247 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
5957, 23, 29, 58syl3an 1156 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 · 𝑋) ∈ 𝐵)
6031, 33, 51grprid 18136 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑁 · 𝑋)(+g𝐺) 0 ) = (𝑁 · 𝑋))
6122, 59, 60syl2anc 586 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 · 𝑋)(+g𝐺) 0 ) = (𝑁 · 𝑋))
6236, 56, 613eqtrd 2862 1 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   + caddc 10542   · cmul 10544  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  cz 11984  +crp 12392  cfl 13163   mod cmo 13240  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Grpcgrp 18105  .gcmg 18226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fl 13165  df-mod 13241  df-seq 13373  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-mulg 18227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator