MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnegneg Structured version   Visualization version   GIF version

Theorem mulgnegneg 17760
Description: The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
mulgnncl.b 𝐵 = (Base‘𝐺)
mulgnncl.t · = (.g𝐺)
mulgneg.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgnegneg ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))

Proof of Theorem mulgnegneg
StepHypRef Expression
1 mulgnncl.b . . . 4 𝐵 = (Base‘𝐺)
2 mulgnncl.t . . . 4 · = (.g𝐺)
3 mulgneg.i . . . 4 𝐼 = (invg𝐺)
41, 2, 3mulgneg 17759 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
54fveq2d 6354 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝐼‘(𝐼‘(𝑁 · 𝑋))))
6 simp1 1131 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝐺 ∈ Grp)
71, 2mulgcl 17758 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
81, 3grpinvinv 17681 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → (𝐼‘(𝐼‘(𝑁 · 𝑋))) = (𝑁 · 𝑋))
96, 7, 8syl2anc 696 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐼‘(𝐼‘(𝑁 · 𝑋))) = (𝑁 · 𝑋))
105, 9eqtrd 2792 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1630  wcel 2137  cfv 6047  (class class class)co 6811  -cneg 10457  cz 11567  Basecbs 16057  Grpcgrp 17621  invgcminusg 17622  .gcmg 17739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-inf2 8709  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-n0 11483  df-z 11568  df-uz 11878  df-fz 12518  df-seq 12994  df-0g 16302  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-grp 17624  df-minusg 17625  df-mulg 17740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator