MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0di Structured version   Visualization version   GIF version

Theorem mulgnn0di 18152
Description: Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b 𝐵 = (Base‘𝐺)
mulgdi.m · = (.g𝐺)
mulgdi.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0di ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))

Proof of Theorem mulgnn0di
Dummy variables 𝑥 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 18129 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
21ad2antrr 761 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝐺 ∈ Mnd)
3 mulgdi.b . . . . . . 7 𝐵 = (Base‘𝐺)
4 mulgdi.p . . . . . . 7 + = (+g𝐺)
53, 4mndcl 17222 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
653expb 1263 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
72, 6sylan 488 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
8 simpll 789 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝐺 ∈ CMnd)
93, 4cmncom 18130 . . . . . 6 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1093expb 1263 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
118, 10sylan 488 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
123, 4mndass 17223 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
132, 12sylan 488 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
14 simpr 477 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
15 nnuz 11667 . . . . 5 ℕ = (ℤ‘1)
1614, 15syl6eleq 2708 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ (ℤ‘1))
17 simplr2 1102 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑋𝐵)
18 elfznn 12312 . . . . . 6 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
19 fvconst2g 6421 . . . . . 6 ((𝑋𝐵𝑘 ∈ ℕ) → ((ℕ × {𝑋})‘𝑘) = 𝑋)
2017, 18, 19syl2an 494 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) = 𝑋)
2117adantr 481 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑋𝐵)
2220, 21eqeltrd 2698 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) ∈ 𝐵)
23 simplr3 1103 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑌𝐵)
24 fvconst2g 6421 . . . . . 6 ((𝑌𝐵𝑘 ∈ ℕ) → ((ℕ × {𝑌})‘𝑘) = 𝑌)
2523, 18, 24syl2an 494 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) = 𝑌)
2623adantr 481 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑌𝐵)
2725, 26eqeltrd 2698 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) ∈ 𝐵)
283, 4mndcl 17222 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
292, 17, 23, 28syl3anc 1323 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑋 + 𝑌) ∈ 𝐵)
30 fvconst2g 6421 . . . . . 6 (((𝑋 + 𝑌) ∈ 𝐵𝑘 ∈ ℕ) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌))
3129, 18, 30syl2an 494 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌))
3220, 25oveq12d 6622 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘)) = (𝑋 + 𝑌))
3331, 32eqtr4d 2658 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘)))
347, 11, 13, 16, 22, 27, 33seqcaopr 12778 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀)))
35 mulgdi.m . . . . 5 · = (.g𝐺)
36 eqid 2621 . . . . 5 seq1( + , (ℕ × {(𝑋 + 𝑌)})) = seq1( + , (ℕ × {(𝑋 + 𝑌)}))
373, 4, 35, 36mulgnn 17468 . . . 4 ((𝑀 ∈ ℕ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀))
3814, 29, 37syl2anc 692 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀))
39 eqid 2621 . . . . . 6 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
403, 4, 35, 39mulgnn 17468 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑋𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
4114, 17, 40syl2anc 692 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
42 eqid 2621 . . . . . 6 seq1( + , (ℕ × {𝑌})) = seq1( + , (ℕ × {𝑌}))
433, 4, 35, 42mulgnn 17468 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑌𝐵) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀))
4414, 23, 43syl2anc 692 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀))
4541, 44oveq12d 6622 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀)))
4634, 38, 453eqtr4d 2665 . 2 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
471ad2antrr 761 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝐺 ∈ Mnd)
48 simplr2 1102 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑋𝐵)
49 simplr3 1103 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑌𝐵)
5047, 48, 49, 28syl3anc 1323 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑋 + 𝑌) ∈ 𝐵)
51 eqid 2621 . . . . . 6 (0g𝐺) = (0g𝐺)
523, 51, 35mulg0 17467 . . . . 5 ((𝑋 + 𝑌) ∈ 𝐵 → (0 · (𝑋 + 𝑌)) = (0g𝐺))
5350, 52syl 17 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = (0g𝐺))
54 eqid 2621 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
5554, 51mndidcl 17229 . . . . . . 7 (𝐺 ∈ Mnd → (0g𝐺) ∈ (Base‘𝐺))
5654, 4, 51mndlid 17232 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (0g𝐺) ∈ (Base‘𝐺)) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5755, 56mpdan 701 . . . . . 6 (𝐺 ∈ Mnd → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
581, 57syl 17 . . . . 5 (𝐺 ∈ CMnd → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5958ad2antrr 761 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
6053, 59eqtr4d 2658 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = ((0g𝐺) + (0g𝐺)))
61 simpr 477 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑀 = 0)
6261oveq1d 6619 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = (0 · (𝑋 + 𝑌)))
6361oveq1d 6619 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0 · 𝑋))
643, 51, 35mulg0 17467 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
6548, 64syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · 𝑋) = (0g𝐺))
6663, 65eqtrd 2655 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0g𝐺))
6761oveq1d 6619 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0 · 𝑌))
683, 51, 35mulg0 17467 . . . . . 6 (𝑌𝐵 → (0 · 𝑌) = (0g𝐺))
6949, 68syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · 𝑌) = (0g𝐺))
7067, 69eqtrd 2655 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0g𝐺))
7166, 70oveq12d 6622 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((0g𝐺) + (0g𝐺)))
7260, 62, 713eqtr4d 2665 . 2 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
73 simpr1 1065 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℕ0)
74 elnn0 11238 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7573, 74sylib 208 . 2 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7646, 72, 75mpjaodan 826 1 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  {csn 4148   × cxp 5072  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881  cn 10964  0cn0 11236  cuz 11631  ...cfz 12268  seqcseq 12741  Basecbs 15781  +gcplusg 15862  0gc0g 16021  Mndcmnd 17215  .gcmg 17461  CMndccmn 18114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mulg 17462  df-cmn 18116
This theorem is referenced by:  mulgdi  18153  mulgmhm  18154
  Copyright terms: Public domain W3C validator