MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0dir Structured version   Visualization version   GIF version

Theorem mulgnn0dir 18251
Description: Sum of group multiples, generalized to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0dir ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgnn0dir
StepHypRef Expression
1 mndsgrp 17911 . . . . . 6 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
21adantr 483 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝐺 ∈ Smgrp)
32ad2antrr 724 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝐺 ∈ Smgrp)
4 simplr 767 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ)
5 simpr 487 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
6 simpr3 1192 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑋𝐵)
76ad2antrr 724 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
8 mulgnndir.b . . . . 5 𝐵 = (Base‘𝐺)
9 mulgnndir.t . . . . 5 · = (.g𝐺)
10 mulgnndir.p . . . . 5 + = (+g𝐺)
118, 9, 10mulgnndir 18250 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
123, 4, 5, 7, 11syl13anc 1368 . . 3 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
13 simpll 765 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝐺 ∈ Mnd)
14 simpr1 1190 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑀 ∈ ℕ0)
1514adantr 483 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑀 ∈ ℕ0)
16 simplr3 1213 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑋𝐵)
178, 9mulgnn0cl 18238 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
1813, 15, 16, 17syl3anc 1367 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 · 𝑋) ∈ 𝐵)
19 eqid 2821 . . . . . . 7 (0g𝐺) = (0g𝐺)
208, 10, 19mndrid 17926 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + (0g𝐺)) = (𝑀 · 𝑋))
2113, 18, 20syl2anc 586 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 · 𝑋) + (0g𝐺)) = (𝑀 · 𝑋))
22 simpr 487 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑁 = 0)
2322oveq1d 7165 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
248, 19, 9mulg0 18225 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2516, 24syl 17 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐺))
2623, 25eqtrd 2856 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0g𝐺))
2726oveq2d 7166 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((𝑀 · 𝑋) + (0g𝐺)))
2822oveq2d 7166 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 + 𝑁) = (𝑀 + 0))
2915nn0cnd 11951 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑀 ∈ ℂ)
3029addid1d 10834 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 + 0) = 𝑀)
3128, 30eqtrd 2856 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 + 𝑁) = 𝑀)
3231oveq1d 7165 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = (𝑀 · 𝑋))
3321, 27, 323eqtr4rd 2867 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
3433adantlr 713 . . 3 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
35 simpr2 1191 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑁 ∈ ℕ0)
36 elnn0 11893 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3735, 36sylib 220 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3837adantr 483 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3912, 34, 38mpjaodan 955 . 2 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
40 simpll 765 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝐺 ∈ Mnd)
41 simplr2 1212 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑁 ∈ ℕ0)
42 simplr3 1213 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑋𝐵)
438, 9mulgnn0cl 18238 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
4440, 41, 42, 43syl3anc 1367 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑁 · 𝑋) ∈ 𝐵)
458, 10, 19mndlid 17925 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((0g𝐺) + (𝑁 · 𝑋)) = (𝑁 · 𝑋))
4640, 44, 45syl2anc 586 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((0g𝐺) + (𝑁 · 𝑋)) = (𝑁 · 𝑋))
47 simpr 487 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑀 = 0)
4847oveq1d 7165 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0 · 𝑋))
4942, 24syl 17 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (0 · 𝑋) = (0g𝐺))
5048, 49eqtrd 2856 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0g𝐺))
5150oveq1d 7165 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((0g𝐺) + (𝑁 · 𝑋)))
5247oveq1d 7165 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 + 𝑁) = (0 + 𝑁))
5341nn0cnd 11951 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑁 ∈ ℂ)
5453addid2d 10835 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (0 + 𝑁) = 𝑁)
5552, 54eqtrd 2856 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 + 𝑁) = 𝑁)
5655oveq1d 7165 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((𝑀 + 𝑁) · 𝑋) = (𝑁 · 𝑋))
5746, 51, 563eqtr4rd 2867 . 2 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
58 elnn0 11893 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5914, 58sylib 220 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
6039, 57, 59mpjaodan 955 1 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  cfv 6350  (class class class)co 7150  0cc0 10531   + caddc 10534  cn 11632  0cn0 11891  Basecbs 16477  +gcplusg 16559  0gc0g 16707  Smgrpcsgrp 17894  Mndcmnd 17905  .gcmg 18218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-seq 13364  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mulg 18219
This theorem is referenced by:  mulgdirlem  18252  cycsubm  18339  cycsubmcom  18341  odmodnn0  18662  mndodconglem  18663  srgbinomlem  19288  evlslem1  20289  cpmadugsumlemB  21476  omndmul2  30708  omndmul3  30709
  Copyright terms: Public domain W3C validator