MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0z Structured version   Visualization version   GIF version

Theorem mulgnn0z 18256
Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0z.b 𝐵 = (Base‘𝐺)
mulgnn0z.t · = (.g𝐺)
mulgnn0z.o 0 = (0g𝐺)
Assertion
Ref Expression
mulgnn0z ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )

Proof of Theorem mulgnn0z
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elnn0 11902 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
3 mulgnn0z.b . . . . . 6 𝐵 = (Base‘𝐺)
4 mulgnn0z.o . . . . . 6 0 = (0g𝐺)
53, 4mndidcl 17928 . . . . 5 (𝐺 ∈ Mnd → 0𝐵)
6 eqid 2823 . . . . . 6 (+g𝐺) = (+g𝐺)
7 mulgnn0z.t . . . . . 6 · = (.g𝐺)
8 eqid 2823 . . . . . 6 seq1((+g𝐺), (ℕ × { 0 })) = seq1((+g𝐺), (ℕ × { 0 }))
93, 6, 7, 8mulgnn 18234 . . . . 5 ((𝑁 ∈ ℕ ∧ 0𝐵) → (𝑁 · 0 ) = (seq1((+g𝐺), (ℕ × { 0 }))‘𝑁))
102, 5, 9syl2anr 598 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = (seq1((+g𝐺), (ℕ × { 0 }))‘𝑁))
113, 6, 4mndlid 17933 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 0𝐵) → ( 0 (+g𝐺) 0 ) = 0 )
125, 11mpdan 685 . . . . . 6 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) = 0 )
1312adantr 483 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → ( 0 (+g𝐺) 0 ) = 0 )
14 simpr 487 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
15 nnuz 12284 . . . . . 6 ℕ = (ℤ‘1)
1614, 15eleqtrdi 2925 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
175adantr 483 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 0𝐵)
18 elfznn 12939 . . . . . 6 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
19 fvconst2g 6966 . . . . . 6 (( 0𝐵𝑥 ∈ ℕ) → ((ℕ × { 0 })‘𝑥) = 0 )
2017, 18, 19syl2an 597 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × { 0 })‘𝑥) = 0 )
2113, 16, 20seqid3 13417 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (seq1((+g𝐺), (ℕ × { 0 }))‘𝑁) = 0 )
2210, 21eqtrd 2858 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = 0 )
23 oveq1 7165 . . . 4 (𝑁 = 0 → (𝑁 · 0 ) = (0 · 0 ))
243, 4, 7mulg0 18233 . . . . 5 ( 0𝐵 → (0 · 0 ) = 0 )
255, 24syl 17 . . . 4 (𝐺 ∈ Mnd → (0 · 0 ) = 0 )
2623, 25sylan9eqr 2880 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 = 0) → (𝑁 · 0 ) = 0 )
2722, 26jaodan 954 . 2 ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑁 · 0 ) = 0 )
281, 27sylan2b 595 1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  {csn 4569   × cxp 5555  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540  cn 11640  0cn0 11900  cuz 12246  ...cfz 12895  seqcseq 13372  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Mndcmnd 17913  .gcmg 18226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mulg 18227
This theorem is referenced by:  mulgz  18257  mulgnn0ass  18265  odmodnn0  18670  mulgmhm  18950  srg1expzeq1  19291  lply1binomsc  20477  tsmsxp  22765
  Copyright terms: Public domain W3C validator