MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnsubcl Structured version   Visualization version   GIF version

Theorem mulgnnsubcl 17325
Description: Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b 𝐵 = (Base‘𝐺)
mulgnnsubcl.t · = (.g𝐺)
mulgnnsubcl.p + = (+g𝐺)
mulgnnsubcl.g (𝜑𝐺𝑉)
mulgnnsubcl.s (𝜑𝑆𝐵)
mulgnnsubcl.c ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
mulgnnsubcl ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥, ·   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem mulgnnsubcl
StepHypRef Expression
1 simp2 1055 . . 3 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑁 ∈ ℕ)
2 mulgnnsubcl.s . . . . 5 (𝜑𝑆𝐵)
323ad2ant1 1075 . . . 4 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑆𝐵)
4 simp3 1056 . . . 4 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑋𝑆)
53, 4sseldd 3569 . . 3 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑋𝐵)
6 mulgnnsubcl.b . . . 4 𝐵 = (Base‘𝐺)
7 mulgnnsubcl.p . . . 4 + = (+g𝐺)
8 mulgnnsubcl.t . . . 4 · = (.g𝐺)
9 eqid 2610 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
106, 7, 8, 9mulgnn 17319 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
111, 5, 10syl2anc 691 . 2 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
12 nnuz 11558 . . . 4 ℕ = (ℤ‘1)
131, 12syl6eleq 2698 . . 3 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑁 ∈ (ℤ‘1))
14 elfznn 12199 . . . . 5 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
15 fvconst2g 6350 . . . . 5 ((𝑋𝑆𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
164, 14, 15syl2an 493 . . . 4 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
17 simpl3 1059 . . . 4 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋𝑆)
1816, 17eqeltrd 2688 . . 3 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) ∈ 𝑆)
19 mulgnnsubcl.c . . . . 5 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
20193expb 1258 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
21203ad2antl1 1216 . . 3 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2213, 18, 21seqcl 12641 . 2 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (seq1( + , (ℕ × {𝑋}))‘𝑁) ∈ 𝑆)
2311, 22eqeltrd 2688 1 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wss 3540  {csn 4125   × cxp 5026  cfv 5790  (class class class)co 6527  1c1 9794  cn 10870  cuz 11522  ...cfz 12155  seqcseq 12621  Basecbs 15644  +gcplusg 15717  .gcmg 17312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-n0 11143  df-z 11214  df-uz 11523  df-fz 12156  df-seq 12622  df-mulg 17313
This theorem is referenced by:  mulgnn0subcl  17326  mulgsubcl  17327  mulgnncl  17328  mulgnnclOLD  17329  xrsmulgzz  28803
  Copyright terms: Public domain W3C validator