MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnsubcl Structured version   Visualization version   GIF version

Theorem mulgnnsubcl 18234
Description: Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b 𝐵 = (Base‘𝐺)
mulgnnsubcl.t · = (.g𝐺)
mulgnnsubcl.p + = (+g𝐺)
mulgnnsubcl.g (𝜑𝐺𝑉)
mulgnnsubcl.s (𝜑𝑆𝐵)
mulgnnsubcl.c ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
mulgnnsubcl ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥, ·   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem mulgnnsubcl
StepHypRef Expression
1 simp2 1133 . . 3 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑁 ∈ ℕ)
2 mulgnnsubcl.s . . . . 5 (𝜑𝑆𝐵)
323ad2ant1 1129 . . . 4 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑆𝐵)
4 simp3 1134 . . . 4 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑋𝑆)
53, 4sseldd 3967 . . 3 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑋𝐵)
6 mulgnnsubcl.b . . . 4 𝐵 = (Base‘𝐺)
7 mulgnnsubcl.p . . . 4 + = (+g𝐺)
8 mulgnnsubcl.t . . . 4 · = (.g𝐺)
9 eqid 2821 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
106, 7, 8, 9mulgnn 18226 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
111, 5, 10syl2anc 586 . 2 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
12 nnuz 12275 . . . 4 ℕ = (ℤ‘1)
131, 12eleqtrdi 2923 . . 3 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑁 ∈ (ℤ‘1))
14 elfznn 12930 . . . . 5 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
15 fvconst2g 6958 . . . . 5 ((𝑋𝑆𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
164, 14, 15syl2an 597 . . . 4 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
17 simpl3 1189 . . . 4 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋𝑆)
1816, 17eqeltrd 2913 . . 3 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) ∈ 𝑆)
19 mulgnnsubcl.c . . . . 5 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
20193expb 1116 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
21203ad2antl1 1181 . . 3 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2213, 18, 21seqcl 13384 . 2 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (seq1( + , (ℕ × {𝑋}))‘𝑁) ∈ 𝑆)
2311, 22eqeltrd 2913 1 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wss 3935  {csn 4560   × cxp 5547  cfv 6349  (class class class)co 7150  1c1 10532  cn 11632  cuz 12237  ...cfz 12886  seqcseq 13363  Basecbs 16477  +gcplusg 16559  .gcmg 18218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-seq 13364  df-mulg 18219
This theorem is referenced by:  mulgnn0subcl  18235  mulgsubcl  18236  mulgnncl  18237  xrsmulgzz  30660
  Copyright terms: Public domain W3C validator