MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgpropd Structured version   Visualization version   GIF version

Theorem mulgpropd 18271
Description: Two structures with the same group-nature have the same group multiple function. 𝐾 is expected to either be V (when strong equality is available) or 𝐵 (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgpropd.m · = (.g𝐺)
mulgpropd.n × = (.g𝐻)
mulgpropd.b1 (𝜑𝐵 = (Base‘𝐺))
mulgpropd.b2 (𝜑𝐵 = (Base‘𝐻))
mulgpropd.i (𝜑𝐵𝐾)
mulgpropd.k ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)
mulgpropd.e ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
Assertion
Ref Expression
mulgpropd (𝜑· = × )
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)

Proof of Theorem mulgpropd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgpropd.b1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐺))
2 mulgpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐻))
3 mulgpropd.i . . . . . . . . . 10 (𝜑𝐵𝐾)
4 ssel 3963 . . . . . . . . . . 11 (𝐵𝐾 → (𝑥𝐵𝑥𝐾))
5 ssel 3963 . . . . . . . . . . 11 (𝐵𝐾 → (𝑦𝐵𝑦𝐾))
64, 5anim12d 610 . . . . . . . . . 10 (𝐵𝐾 → ((𝑥𝐵𝑦𝐵) → (𝑥𝐾𝑦𝐾)))
73, 6syl 17 . . . . . . . . 9 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥𝐾𝑦𝐾)))
87imp 409 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐾𝑦𝐾))
9 mulgpropd.e . . . . . . . 8 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
108, 9syldan 593 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
111, 2, 10grpidpropd 17874 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
12113ad2ant1 1129 . . . . 5 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (0g𝐺) = (0g𝐻))
13 1zzd 12016 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 1 ∈ ℤ)
14 vex 3499 . . . . . . . . . . . 12 𝑏 ∈ V
1514fvconst2 6968 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((ℕ × {𝑏})‘𝑥) = 𝑏)
16 nnuz 12284 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
1716eqcomi 2832 . . . . . . . . . . 11 (ℤ‘1) = ℕ
1815, 17eleq2s 2933 . . . . . . . . . 10 (𝑥 ∈ (ℤ‘1) → ((ℕ × {𝑏})‘𝑥) = 𝑏)
1918adantl 484 . . . . . . . . 9 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝑏})‘𝑥) = 𝑏)
2033ad2ant1 1129 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 𝐵𝐾)
21 simp3 1134 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 𝑏𝐵)
2220, 21sseldd 3970 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 𝑏𝐾)
2322adantr 483 . . . . . . . . 9 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑏𝐾)
2419, 23eqeltrd 2915 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝑏})‘𝑥) ∈ 𝐾)
25 mulgpropd.k . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)
26253ad2antl1 1181 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)
2793ad2antl1 1181 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
2813, 24, 26, 27seqfeq3 13423 . . . . . . 7 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → seq1((+g𝐺), (ℕ × {𝑏})) = seq1((+g𝐻), (ℕ × {𝑏})))
2928fveq1d 6674 . . . . . 6 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎) = (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎))
301, 2, 10grpinvpropd 18176 . . . . . . . 8 (𝜑 → (invg𝐺) = (invg𝐻))
31303ad2ant1 1129 . . . . . . 7 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (invg𝐺) = (invg𝐻))
3228fveq1d 6674 . . . . . . 7 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎) = (seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))
3331, 32fveq12d 6679 . . . . . 6 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))
3429, 33ifeq12d 4489 . . . . 5 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))) = if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))
3512, 34ifeq12d 4489 . . . 4 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))) = if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))))
3635mpoeq3dva 7233 . . 3 (𝜑 → (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
37 eqidd 2824 . . . 4 (𝜑 → ℤ = ℤ)
38 eqidd 2824 . . . 4 (𝜑 → if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))) = if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))))
3937, 1, 38mpoeq123dv 7231 . . 3 (𝜑 → (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))))
40 eqidd 2824 . . . 4 (𝜑 → if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))) = if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))))
4137, 2, 40mpoeq123dv 7231 . . 3 (𝜑 → (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
4236, 39, 413eqtr3d 2866 . 2 (𝜑 → (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
43 eqid 2823 . . 3 (Base‘𝐺) = (Base‘𝐺)
44 eqid 2823 . . 3 (+g𝐺) = (+g𝐺)
45 eqid 2823 . . 3 (0g𝐺) = (0g𝐺)
46 eqid 2823 . . 3 (invg𝐺) = (invg𝐺)
47 mulgpropd.m . . 3 · = (.g𝐺)
4843, 44, 45, 46, 47mulgfval 18228 . 2 · = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))))
49 eqid 2823 . . 3 (Base‘𝐻) = (Base‘𝐻)
50 eqid 2823 . . 3 (+g𝐻) = (+g𝐻)
51 eqid 2823 . . 3 (0g𝐻) = (0g𝐻)
52 eqid 2823 . . 3 (invg𝐻) = (invg𝐻)
53 mulgpropd.n . . 3 × = (.g𝐻)
5449, 50, 51, 52, 53mulgfval 18228 . 2 × = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))))
5542, 48, 543eqtr4g 2883 1 (𝜑· = × )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3938  ifcif 4469  {csn 4569   class class class wbr 5068   × cxp 5555  cfv 6357  (class class class)co 7158  cmpo 7160  0cc0 10539  1c1 10540   < clt 10677  -cneg 10873  cn 11640  cz 11984  cuz 12246  seqcseq 13372  Basecbs 16485  +gcplusg 16567  0gc0g 16715  invgcminusg 18106  .gcmg 18226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373  df-0g 16717  df-minusg 18109  df-mulg 18227
This theorem is referenced by:  mulgass3  19389  coe1tm  20443  ply1coe  20466  evl1expd  20510
  Copyright terms: Public domain W3C validator