MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgsubdir Structured version   Visualization version   GIF version

Theorem mulgsubdir 17783
Description: Subtraction of a group element from itself. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgsubdir.b 𝐵 = (Base‘𝐺)
mulgsubdir.t · = (.g𝐺)
mulgsubdir.d = (-g𝐺)
Assertion
Ref Expression
mulgsubdir ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀𝑁) · 𝑋) = ((𝑀 · 𝑋) (𝑁 · 𝑋)))

Proof of Theorem mulgsubdir
StepHypRef Expression
1 znegcl 11604 . . 3 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
2 mulgsubdir.b . . . 4 𝐵 = (Base‘𝐺)
3 mulgsubdir.t . . . 4 · = (.g𝐺)
4 eqid 2760 . . . 4 (+g𝐺) = (+g𝐺)
52, 3, 4mulgdir 17774 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g𝐺)(-𝑁 · 𝑋)))
61, 5syl3anr2 1527 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g𝐺)(-𝑁 · 𝑋)))
7 simpr1 1234 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
87zcnd 11675 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℂ)
9 simpr2 1236 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℤ)
109zcnd 11675 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℂ)
118, 10negsubd 10590 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 + -𝑁) = (𝑀𝑁))
1211oveq1d 6828 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀𝑁) · 𝑋))
13 eqid 2760 . . . . . 6 (invg𝐺) = (invg𝐺)
142, 3, 13mulgneg 17761 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
15143adant3r1 1198 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
1615oveq2d 6829 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋)(+g𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑁 · 𝑋))))
172, 3mulgcl 17760 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
18173adant3r2 1199 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
192, 3mulgcl 17760 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
20193adant3r1 1198 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) ∈ 𝐵)
21 mulgsubdir.d . . . . 5 = (-g𝐺)
222, 4, 13, 21grpsubval 17666 . . . 4 (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑁 · 𝑋))))
2318, 20, 22syl2anc 696 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋) (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑁 · 𝑋))))
2416, 23eqtr4d 2797 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋)(+g𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋) (𝑁 · 𝑋)))
256, 12, 243eqtr3d 2802 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀𝑁) · 𝑋) = ((𝑀 · 𝑋) (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6813   + caddc 10131  cmin 10458  -cneg 10459  cz 11569  Basecbs 16059  +gcplusg 16143  Grpcgrp 17623  invgcminusg 17624  -gcsg 17625  .gcmg 17741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-seq 12996  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742
This theorem is referenced by:  odmod  18165  odcong  18168  gexdvds  18199  archiabllem1a  30054
  Copyright terms: Public domain W3C validator