MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0sr Structured version   Visualization version   GIF version

Theorem mulgt0sr 9964
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulgt0sr ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))

Proof of Theorem mulgt0sr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 9927 . . . . 5 <R ⊆ (R × R)
21brel 5202 . . . 4 (0R <R 𝐴 → (0RR𝐴R))
32simprd 478 . . 3 (0R <R 𝐴𝐴R)
41brel 5202 . . . 4 (0R <R 𝐵 → (0RR𝐵R))
54simprd 478 . . 3 (0R <R 𝐵𝐵R)
63, 5anim12i 589 . 2 ((0R <R 𝐴 ∧ 0R <R 𝐵) → (𝐴R𝐵R))
7 df-nr 9916 . . 3 R = ((P × P) / ~R )
8 breq2 4689 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (0R <R [⟨𝑥, 𝑦⟩] ~R ↔ 0R <R 𝐴))
98anbi1d 741 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R )))
10 oveq1 6697 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))
1110breq2d 4697 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R )))
129, 11imbi12d 333 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )) ↔ ((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))))
13 breq2 4689 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (0R <R [⟨𝑧, 𝑤⟩] ~R ↔ 0R <R 𝐵))
1413anbi2d 740 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (0R <R 𝐴 ∧ 0R <R 𝐵)))
15 oveq2 6698 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R 𝐵))
1615breq2d 4697 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R (𝐴 ·R 𝐵)))
1714, 16imbi12d 333 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R )) ↔ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))))
18 gt0srpr 9937 . . . . 5 (0R <R [⟨𝑥, 𝑦⟩] ~R𝑦<P 𝑥)
19 gt0srpr 9937 . . . . 5 (0R <R [⟨𝑧, 𝑤⟩] ~R𝑤<P 𝑧)
2018, 19anbi12i 733 . . . 4 ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝑦<P 𝑥𝑤<P 𝑧))
21 simprr 811 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑤P)
22 mulclpr 9880 . . . . . . . 8 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
23 mulclpr 9880 . . . . . . . 8 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
24 addclpr 9878 . . . . . . . 8 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
2522, 23, 24syl2an 493 . . . . . . 7 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
2625an4s 886 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
27 ltexpri 9903 . . . . . . . . 9 (𝑦<P 𝑥 → ∃𝑣P (𝑦 +P 𝑣) = 𝑥)
28 ltexpri 9903 . . . . . . . . 9 (𝑤<P 𝑧 → ∃𝑢P (𝑤 +P 𝑢) = 𝑧)
29 mulclpr 9880 . . . . . . . . . . . . . . . . 17 ((𝑣P𝑤P) → (𝑣 ·P 𝑤) ∈ P)
30 oveq12 6699 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (𝑥 ·P 𝑧))
3130oveq1d 6705 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
32 distrpr 9888 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢))
33 oveq2 6698 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑤 +P 𝑢) = 𝑧 → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
3432, 33syl5eqr 2699 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 +P 𝑢) = 𝑧 → ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) = (𝑦 ·P 𝑧))
3534oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 +P 𝑢) = 𝑧 → (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))) = ((𝑦 ·P 𝑧) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
36 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑦 ∈ V
37 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑣 ∈ V
38 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑤 ∈ V
39 mulcompr 9883 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓)
40 distrpr 9888 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P ))
4136, 37, 38, 39, 40caovdir 6910 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 +P 𝑣) ·P 𝑤) = ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))
42 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑢 ∈ V
4336, 37, 42, 39, 40caovdir 6910 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 +P 𝑣) ·P 𝑢) = ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢))
4441, 43oveq12i 6702 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)) = (((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) +P ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢)))
45 distrpr 9888 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢))
46 ovex 6718 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ·P 𝑤) ∈ V
47 ovex 6718 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ·P 𝑢) ∈ V
48 ovex 6718 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 ·P 𝑤) ∈ V
49 addcompr 9881 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 +P 𝑔) = (𝑔 +P 𝑓)
50 addasspr 9882 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P ))
51 ovex 6718 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 ·P 𝑢) ∈ V
5246, 47, 48, 49, 50, 51caov4 6907 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))) = (((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) +P ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢)))
5344, 45, 523eqtr4i 2683 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢)))
54 ovex 6718 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ·P 𝑧) ∈ V
5548, 54, 51, 49, 50caov12 6904 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑦 ·P 𝑧) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢)))
5635, 53, 553eqtr4g 2710 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 +P 𝑢) = 𝑧 → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = ((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
57 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 +P 𝑣) = 𝑥 → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
5841, 57syl5eqr 2699 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 +P 𝑣) = 𝑥 → ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) = (𝑥 ·P 𝑤))
5956, 58oveqan12rd 6710 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)))
6031, 59eqtr3d 2687 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)))
61 addasspr 9882 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)))
62 addcompr 9881 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
6361, 62eqtr3i 2675 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
64 addasspr 9882 . . . . . . . . . . . . . . . . . . . . 21 (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
65 ovex 6718 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)) ∈ V
66 ovex 6718 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ·P 𝑤) ∈ V
6748, 65, 66, 49, 50caov32 6903 . . . . . . . . . . . . . . . . . . . . 21 (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)) = (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))
68 addasspr 9882 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))
6968oveq2i 6701 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
7064, 67, 693eqtr4i 2683 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
7160, 63, 703eqtr3g 2708 . . . . . . . . . . . . . . . . . . 19 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
72 addcanpr 9906 . . . . . . . . . . . . . . . . . . 19 (((𝑣 ·P 𝑤) ∈ P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
7371, 72syl5 34 . . . . . . . . . . . . . . . . . 18 (((𝑣 ·P 𝑤) ∈ P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
74 eqcom 2658 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) ↔ (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
75 ltaddpr2 9895 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P → ((((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
7674, 75syl5bi 232 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
7776adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑣 ·P 𝑤) ∈ P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
7873, 77syld 47 . . . . . . . . . . . . . . . . 17 (((𝑣 ·P 𝑤) ∈ P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
7929, 78sylan 487 . . . . . . . . . . . . . . . 16 (((𝑣P𝑤P) ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
8079a1d 25 . . . . . . . . . . . . . . 15 (((𝑣P𝑤P) ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (𝑢P → (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
8180exp4a 632 . . . . . . . . . . . . . 14 (((𝑣P𝑤P) ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (𝑢P → ((𝑦 +P 𝑣) = 𝑥 → ((𝑤 +P 𝑢) = 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))))
8281com34 91 . . . . . . . . . . . . 13 (((𝑣P𝑤P) ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (𝑢P → ((𝑤 +P 𝑢) = 𝑧 → ((𝑦 +P 𝑣) = 𝑥 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))))
8382rexlimdv 3059 . . . . . . . . . . . 12 (((𝑣P𝑤P) ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (∃𝑢P (𝑤 +P 𝑢) = 𝑧 → ((𝑦 +P 𝑣) = 𝑥 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
8483expl 647 . . . . . . . . . . 11 (𝑣P → ((𝑤P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (∃𝑢P (𝑤 +P 𝑢) = 𝑧 → ((𝑦 +P 𝑣) = 𝑥 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))))
8584com24 95 . . . . . . . . . 10 (𝑣P → ((𝑦 +P 𝑣) = 𝑥 → (∃𝑢P (𝑤 +P 𝑢) = 𝑧 → ((𝑤P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))))
8685rexlimiv 3056 . . . . . . . . 9 (∃𝑣P (𝑦 +P 𝑣) = 𝑥 → (∃𝑢P (𝑤 +P 𝑢) = 𝑧 → ((𝑤P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
8727, 28, 86syl2im 40 . . . . . . . 8 (𝑦<P 𝑥 → (𝑤<P 𝑧 → ((𝑤P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
8887imp 444 . . . . . . 7 ((𝑦<P 𝑥𝑤<P 𝑧) → ((𝑤P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
8988com12 32 . . . . . 6 ((𝑤P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → ((𝑦<P 𝑥𝑤<P 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9021, 26, 89syl2anc 694 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦<P 𝑥𝑤<P 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
91 mulsrpr 9935 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
9291breq2d 4697 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ))
93 gt0srpr 9937 . . . . . 6 (0R <R [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ↔ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
9492, 93syl6bb 276 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9590, 94sylibrd 249 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦<P 𝑥𝑤<P 𝑧) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )))
9620, 95syl5bi 232 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )))
977, 12, 17, 962ecoptocl 7881 . 2 ((𝐴R𝐵R) → ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)))
986, 97mpcom 38 1 ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wrex 2942  cop 4216   class class class wbr 4685  (class class class)co 6690  [cec 7785  Pcnp 9719   +P cpp 9721   ·P cmp 9722  <P cltp 9723   ~R cer 9724  Rcnr 9725  0Rc0r 9726   ·R cmr 9730   <R cltr 9731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-ec 7789  df-qs 7793  df-ni 9732  df-pli 9733  df-mi 9734  df-lti 9735  df-plpq 9768  df-mpq 9769  df-ltpq 9770  df-enq 9771  df-nq 9772  df-erq 9773  df-plq 9774  df-mq 9775  df-1nq 9776  df-rq 9777  df-ltnq 9778  df-np 9841  df-1p 9842  df-plp 9843  df-mp 9844  df-ltp 9845  df-enr 9915  df-nr 9916  df-mr 9918  df-ltr 9919  df-0r 9920
This theorem is referenced by:  sqgt0sr  9965  axpre-mulgt0  10027
  Copyright terms: Public domain W3C validator